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BME 565 / BME 665

Introduction to Computational Neurophysiology

Instructors:  Patrick Roberts, Tamara Hayes

Administrivia

• Course website: http://www.bme.ogi.edu/BME665
• Course mailing list: bme665@bme.ogi.edu

– Send all questions to the list, rather than to the instructors directly. 
Others may have similar questions

• Office hours by appointment. Please use email to communicate, 
rather than leave voice mail.

– robertspa@ohsu.edu
– hayest@bme.ogi.edu

• Text:
– Theoretical Neuroscience (2001, 2005) Peter Dayan & L. F. Abbott 
– Also to be used (available in the library): 

• Biophysics of Computation: Information Processing in Single Neurons (1998) 
Christof Koch 

• Spiking Neuron Models (2002) Wulfram Gerstner & Werner M. Kistler
• Spikes: Exploring the neural code (1999) Fred Rieke et. al. 
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Course outline (20 classes, 10 weeks)

Approach will be “bottom-up” starting with biophysical models of 
neurons and moving to information coding

• Part A: Biophysical models of single neurons
– Using the simulation package NEURON as well as Matlab, we will 

explore the effects of membrane currents and neuron morphology on 
the responses of neurons to stimuli

• Part B: Information coding: simplifying the model
– We will explore the effects of synaptic connections in small networks 

using Matlab
• Part C: Higher-level models of neuronal processing

– A brief exploration of learning in neuronal systems 

Desired outcomes:

1. To help students understand how computational models can be 
used to analyze, explain and predict the physiological behavior of 
neurons and assemblies of neurons.

2. To help students to develop an intuition for the dynamics of neural 
processes in single neurons and in networks.

3. To provide students with hands-on experience using current 
research tools to investigate the concepts underlying these 
computational models.
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Evaluation

1. Weekly homework: exercises using modeling concepts with simulations 
(pass/fail)

2. Take-home exams (2), one after each of the first 2 sections (graded on 0-4 
scale)

3. Final project (work in groups of 2). Graded on a 0-4 scale.

Late assignments accepted only with instructor approval prior to the due date.

Grading:
A+ Superior performance in all aspects of the course
A Superior performance in most aspects; high quality in remainder
A- High quality performance in all or most aspects of the course
B+ Satisfactory performance in most aspects; high quality in some
B Satisfactory performance in the course
B- Satisfactory performance in most aspects; some sub-standard work

Text and reading materials

Recommended text:
Theoretical Neuroscience (2001, 2005) Peter Dayan & L. F. Abbott 

Also useful:
Biophysics of Computation: Information Processing in Single Neurons

(1998) Christof Koch 
Spiking Neuron Models (2002) Wulfram Gerstner & Werner M. Kistler
Spikes: Exploring the Neural Code (1997) Fred Rieke et. al.
The Nature of Mathematical Modeling (1999) Neil Gershenfeld

Primary literature readings will be assigned relating to topics discussed 
in class.
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Why computational neurophysiology?

Pyramidal cell: R ~20µm
- axon R ~ 1µm, L~1cm

Human brain
1-2kg

Synapses: ~ 1014 in human cortex
~ 103 per neuron

105 neurons in a fruit fly
106 in mouse
1011 in human
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An important tool for neuroscience research

• Enhances our understanding of 
cellular neurophysiology

• Generates new hypotheses about 
interactions between neurons

• Allows us to test hypotheses 
before undertaking costly 
experiments

• Allows us to develop models of 
neuronal learning

From: Mori et. al. A frequency-dependent switch from inhibition to excitation 
in a hippocampal unitary circuit. Nature 431, 453-456 (23 September 2004) 

A tool for understanding higher-order brain function

From: Rust et. al. How MT cells analyze the motion of visual patterns. Nature 
Neuroscience 9, 1421 – 1431, 2006
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A tool for neuroprosthetic device research

From: Taylor et. al. Direct Cortical Control of 3D Neuroprosthetic Devices . 
Science 7 June 2002: Vol. 296. no. 5574, pp. 1829 - 1832

Electrical properties of neurons

Membrane resistance
Membrane potential
Membrane capacitance
Ion channels
Resting potential (~ -70 mV)
Equilibrium potential

EK -70mV
ENa +50mV
ECa +150mV

Na+, Ca2+

K+
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Cable properties of neurons

Intracellular resistance
Current in the cable

Learn what typical values are for membrane and channel 
resistances, capacitances, and equilibrium potentials. 
This will give you intuition about what should or shouldn’t 
happen when channels open and close.

Part A: Biophysical models of single neurons
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Linear Differential Equations

• Simplest differential equation

• If linear in y, the equation can be written in terms of a linear operator 

• If                   then the equation is homogenous and it will have N linearly 
independent solutions   u1(t), u2(t), …, uN(t)

• Any arbitrary linear combination of those solutions is also a solution, called 
the general solution:
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Linear differential equations (cont.)

• One approach to solving a differential is to guess the functional form 
of the solution

• Often try              as the solution for the homogeneous part of the 
equation

• Substitution of this guess gives the characteristic equation:

• The real part of the roots represent exponentially growing or 
decaying solutions, the complex part represents oscillatory behavior

• If the roots are distinct, the general solution is:
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Linear differential equations: example
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rtey =If we assume a solution of the form 
the characteristic equation gives:

Hence, the undriven response simply 
discharges the capacitor. 
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To look for a particular solution we must know the input Vi and then 
choose an ansatz V0 :

Assume periodic forcing              and a solution of the form: tiAeV ω=0
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Part B: Information coding

Spike-count rates

• Treat action potentials as a series of n spikes occurring at times ti
• Then the spike sequence can be considered a series of Dirac 

functions:

note:

So, the spike-count rate r for an interval T is given by:
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Time interval τ

Representing the Stimulus: 
Spike-triggered average

Average over all 
n spikes in a trial

Then, average 
over trials:
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The neuron’s view
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Part C: Higher-level models of neuronal processing 

wuv = vr −=δwhereuw εδ=Δ

Predicted 
reward

Stimulus 
(0 or 1)

Learning rate Prediction error
Actual reward

Result of suppressed inhibition

• High dose (35 mM, 0.2 µl/hour) 
diazepam treatment. Diazepam 
potentiates chloride flux through 
the GABAA receptor 

• A: control hemisphere
• B:  high dose yields an area of 

column desegregation 

Fagiolini et al., Science, Vol 303, 
Issue 5664, 1681-1683, 2004
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Useful background material

• More facts about neurons. 
http://www.dna.caltech.edu/courses/cns187/references/brain.pdf

• More depth about solving linear differential equations. 
http://www.physics.ohio-
state.edu/~physedu/mapletutorial/tutorials/diff_eqs/homo_lnr.htm

• A Linear Algebra review. 
http://www.dna.caltech.edu/courses/cns187/references/matrices.pdf


