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Which Model to Use for Cortical Spiking Neurons?
Eugene M. Izhikevich

Abstract— We discuss the biological plausibility and computa-
tional efficiency of some of the most useful models of spiking and
bursting neurons. We compare their applicability to large-scale
simulations of cortical neural networks.

Index Terms— Hodgkin-Huxley, quadratic integrate-and-fire,
PCNN, spike-timing, chaos

I. I NTRODUCTION

DURING last few years we have witnessed a shift of
the emphasis in the artificial neural network commu-

nity toward spiking neural networks. Motivated by biological
discoveries, many studies (see this volume) consider pulse-
coupled neural networks with spike-timing as an essential
component in information processing by the brain.

In any study of network dynamics, there are two crucial
issues: (1) what model describes spiking dynamics of each
neuron, and (2) how the neurons are connected. Inappropriate
choice of the spiking model or the connectivity may lead to
results having nothing to do with the information processing
by the brain. In this paper we consider the first issue, i.e., we
compare and contrast various models of spiking neurons.

In Sect. II and Fig. 1 we review important neuro-
computational features of real neurons and their contribution
to temporal coding and spike-timing information processing.
In Sect. III we consider various models of spiking neurons and
rank them according to (1) the number of neuro-computational
features they can reproduce, and (2) their implementation effi-
ciency, i.e., the number of floating point operations (addition,
multiplication, etc.) needed to simulate the model during a 1
ms time span. The results of our comparison are summarized
in Fig. 2. We compare the utility of the models to large-scale
simulations of cortical networks in Sect. IV.

II. N EURO-COMPUTATIONAL FEATURES

In Fig. 1 we review 20 of the most prominent features
of biological spiking neurons. The goal of this section is to
illustrate the richness and complexity of spiking behavior of
individual neurons in response to simple pulses of dc-current.
What happens when only tens (let alone billions) of such
neurons are coupled together is beyond our comprehension.
Using some of the models discussed in the next section, the
reader can simulate thousands of cortical neurons in real time
with 1 ms resolution.

A. Tonic Spiking

Most neurons are excitable; that is, they are quiescent
but can fire spikes when stimulated. To test this property,
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neurophysiologists inject pulses of dc-current via an electrode
attached to the neuron and record its membrane potential. The
input current and the neuronal response are usually plotted
one beneath the other, as in Fig. 1A. While the input is on,
the neuron continues to fire a train of spikes. This kind of
behavior, called tonic spiking, can be observed in the three
types of cortical neurons: regular spiking (RS) excitatory
neurons, low-threshold spiking (LTS) and fast spiking (FS)
inhibitory neurons [1], [6]. Continuous firing of such neurons
indicate that there is a persistent input.

B. Phasic Spiking

A neuron may fire only a single spike at the onset of the
input, as in Fig. 1B, and remain quiescent afterwards. Such a
response is called phasic spiking, and it is useful for detection
of the beginning of stimulation.

C. Tonic Bursting

Some neurons, such as the chattering neurons in cat neo-
cortex [7], fire periodic bursts of spikes when stimulated, as in
Fig. 1C. The interburst (i.e., between bursts) frequency may
be as high as 50 Hz, and it is believed that such neurons
contribute to the gamma-frequency oscillations in the brain.

D. Phasic Bursting

Similarly to the phasic spikers, some neurons are phasic
bursters, as in Fig. 1D. Such neurons report the beginning of
the stimulation by transmitting a burst.

There are three major hypothesis on the importance of
bursts in the brain: (1) Bursts are needed to overcome the
synaptic transmission failure and reduce neuronal noise [20].
(2) Bursts can transmit saliency of the input, because the
effect of a burst on the postsynaptic neuron is stronger than
the effect of a single spike. (3) Bursts can be used for
selective communication between neurons [14], where the
interspike frequency within the bursts encodes the channel of
communication. A good model of a cortical neuronal network
cannot neglect bursting neurons.

E. Mixed Model (Bursting Then Spiking)

Intrinsically bursting (IB) excitatory neurons in mammalian
neocortex [1] can exhibit a mixed type of spiking activity
depicted in Fig. 1E. They fire a phasic burst at the onset of
stimulation and then switch to the tonic spiking mode. It is
not clear what kind of computation such a neuron can do
in addition to detecting the onset and reporting the extent of
stimulation.
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F. Spike Frequency Adaptation

The most common type of excitatory neuron in mammalian
neocortex, namely the regular spiking (RS) cell, fires tonic
spikes with decreasing frequency, as in Fig. 1F. That is, the
frequency is relatively high at the onset of stimulation, and
then it adapts. Low-threshold spiking (LTS) inhibitory neurons
also have this property. The interspike frequency of such cells
may encode the time elapsed since the onset of the input.

G. Class 1 Excitability

The frequency of tonic spiking of neocortical RS excitatory
neurons depends on the strength of the input, and it may
span the range from 2 Hz to 200 Hz, or even greater. The
ability to fire low-frequency spikes when the input is weak
(but superthreshold) is called Class 1 excitability [8], [17],
[22]. Class 1 excitable neurons can encode the strength of the
input into their firing rate, as in Fig. 1G.

H. Class 2 Excitability

Some neurons cannot fire low-frequency spike trains; That
is, they are either quiescent or fire a train of spikes with a
certain relatively large frequency, say 40 Hz, as in Fig. 1H.
Such neurons are called Class 2 excitable [8], [17], [22]. Their
firing rate is a poor predictor of the strength of stimulation.

I. Spike Latency

Most cortical neurons fire spikes with a delay that depends
on the strength of the input signal. For a relatively weak but
superthreshold input the delay, also called spike latency, can
be quite large, as in Fig. 1I. The RS cells in mammalian cortex
can have latencies of tens of milliseconds. Such latencies
provide a spike-timing mechanism to encode the strength of
the input.

J. Subthreshold Oscillations

Practically every brain structure has neurons capable of
exhibiting oscillatory potentials, as in Fig. 1J. The frequency
of such oscillations play an important role and such neurons
act as band-pass filters, as we discuss next.

K. Frequency Preference and Resonance

Due to the resonance phenomenon, neurons having oscil-
latory potentials can respond selectively to the inputs having
frequency content similar to the frequency of subthreshold os-
cillations. Such neurons can implement frequency-modulated
(FM) interactions and multiplexing of signals [14], [16]. In
Fig. 1K we stimulate such a neuron with two doublets (pairs
of spikes) having different interspike frequencies. The neuron
responds only to the doublet whose frequency resonates with
the frequency of subthreshold oscillations. Such neurons are
called resonators.

L. Integration and Coincidence Detection

Neurons without oscillatory potentials act as integrators:
They prefer high-frequency input; the higher the frequency
the more likely they fire, as in Fig. 1L. This can be useful for
detecting coincident or nearly coincident spikes.

M. Rebound Spike

When a neuron receives and then is released from an
inhibitory input, it may fire a post-inhibitory (rebound) spike,
as in Fig. 1M. This phenomenon is related to the anodal break
excitation in excitable membranes. Many spiking neurons can
fire in response to brief inhibitory inputs thereby blurring the
difference between excitation and inhibition.

N. Rebound Burst

Some neurons, including the thalamo-cortical cells, may
fire post-inhibitory bursts, as in Fig. 1N. It is believed that
such bursts contribute to the sleep oscillations in the thalamo-
cortical system.

O. Threshold Variability

A common misconception in the artificial neural network
community is the belief that spiking neurons have a fixed
voltage threshold. It is well-known that biological neurons
have a variable threshold that depends on the prior activity of
the neurons. In Fig. 1-O we first stimulate a neuron with a brief
excitatory pulse of current that produces 10 mV depolarization.
The neuron does not fire, hence the input is subthreshold.
Then, we apply a brief inhibitory input and then exactly the
same “subthreshold” pulse of current. The neuron fires the
second time because its “threshold” was lowered by the pre-
ceding inhibitory input. Hence, the same 10 mV depolarization
can be subthreshold or superthreshold depending on the prior
activity. Interestingly, a preceding excitatory pulse might raise
the threshold and make the neuron less excitable.

P. Bistability of Resting and Spiking States

Some neurons can exhibit two stable modes of operation:
resting and tonic spiking (or even bursting). An excitatory or
inhibitory pulse can switch between the modes, as in Fig. 1P,
thereby creating an interesting possibility for bistability and
short-term memory. Notice that to switch from the tonic
spiking to resting mode, the input must arrive at an appropriate
phase of oscillation, thereby emphasizing the importance of
spike-timing in such information processing.

Q. Depolarizing After-Potentials

After firing a spike, the membrane potential of a neuron
may exhibit a prolonged after-hyperpolarization (called AHP)
as, e.g., in Fig. 1B,I or M, or a prolonged depolarized after-
potential (called DAP), as in Fig. 1Q. Such DAPs can appear
because of dendritic influence, because of a high-threshold
inward currents activated during the spike, or because of an
interplay between subthreshold voltage-gated currents. In any
case, such a neuron has shortened refractory period and it
becomes super-excitable.
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(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

Fig. 1. Summary of the neuro-computational properties of biological spiking neurons. Shown are simulations of the same model, Eq. (1, 2), with different
choices of parameters. Each horizontal bar denotes 20 ms time interval. The MATLAB file generating the figure and containing all the parameters, as well
as interactive MATLAB tutorial program can be downloaded from the author’s website. This figure is reproduced with permission from www.izhikevich.com.
(Electronic version of the figure and reproduction permissions are freely available at www.izhikevich.com).
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R. Accommodation

Neurons are extremely sensitive to brief coincident inputs,
but may not fire in response to a strong but slowly increasing
input, as we illustrate in Fig. 1R. The slowly ramped cur-
rent in the figure does not elicit a spike, while a smaller
but sharply ramped current elicits a spike. During the slow
ramp, the inward currents have enough time to inactivate and
outward currents have enough time to activate, so the neuron
accommodates, becomes less excitable and cannot generate a
spike.

S. Inhibition-Induced Spiking

A bizarre feature of many thalamo-cortical neurons is that
they are quiescent when there is no input, but fire when
hyperpolarized by an inhibitory input or an injected current,
as we illustrate in Fig. 1S. This happens because the injected
current activates the h-current and de-inactivates calcium T-
current, leading to tonic spiking.

T. Inhibition-Induced Bursting

Instead of spiking, a thalamo-cortical neuron can fire tonic
bursts of spikes in response to a prolonged hyperpolarization,
as in Fig. 1T. It is believed that such bursting takes place
during spindle wave oscillations in the thalamo-cortical system
and it plays an important role in sleep rhythms.

No model should exhibit all these 20 neuro-computational
properties simultaneously simply because some of the prop-
erties are mutually exclusive. For example, a neuron cannot
be an integrator and a resonator at the same time. However,
there are models that can easily be tuned to exhibit each such
property. For example, all of the neuronal responses in Fig. 1
were obtained using a simple spiking model having 4 easily
tunable parameters [15].

III. SPIKING MODELS

Below we review some widely used models of spiking
and bursting neurons that can be expressed in the form of
ordinary differential equations (thus, we exclude the spike
response model [5]). In addition to the 20 neuro-computational
features reviewed above, we also consider whether the models
have biophysically meaningful and measurable parameters,
and whether they can exhibit autonomous chaotic activity.
We start with the simplest models first. The summary of our
comparison is in Fig. 2.

Throughout this sectionv denotes the membrane potential
and v′ denotes its derivative with respect to time. All the
parameters in the models are chosen so thatv has mV scale
and the time has ms scale. To compare computational cost,
we assume that each model, written as a dynamical system
ẋ = f(x), is implemented using a fixed-step first-order Euler
methodx(t + τ) = x(t) + τf(x(t)) with the integration time
stepτ chosen to achieve a reasonable numerical accuracy.

A. Integrate-and-Fire

One of the most widely used models in computational
neuroscience is the leaky integrate-and-fire (I&F) neuron

v′ = I + a− bv , if v ≥ vthresh, thenv ← c

wherev is the membrane potential,I is the input current, and
a, b, c and vthresh are the parameters. When the membrane
potentialv reaches the threshold valuevthresh, the neuron is
said to fire a spike, andv is reset toc.

The I&F neuron is Class 1 excitable; it can fire tonic
spikes with constant frequency, and it is an integrator. It is the
simplest model to implement when the integration time stepτ
is 1 ms. Indeed, the iterationv(t+1) = v(t)+(I +a− bv(t))
takes only 4 floating point operations (additions, multiplica-
tions, etc.) plus one comparison with the thresholdvthresh.
Because I&F has only one variable, it cannot have phasic
spiking, bursting of any kind, rebound responses, threshold
variability, bistability of attractors, or autonomous chaotic
dynamics. Because of the fixed threshold, the spikes do not
have latencies. In summary, despite its simplicity, I&F is one
of the worst models to use in simulations, unless one wants
to prove analytical results.

B. Integrate-and-Fire with Adaptation

The I&F model is one-dimensional, hence it cannot burst
or have other properties of cortical neurons. One may think
that having a second linear equation

v′ = I + a− bv + g(d− v)
g′ = (eδ(t)− g)/τ

describing activation dynamics of a high-threshold K current
can make an improvement, e.g., endow the model with spike-
frequency adaptation. Indeed, each firing increases the K
activation gateg via Dirac delta-functionδ and produces
an outward current that slows down the frequency of tonic
spiking. Simulations of this model take 10 floating point
operations per 1 ms time step, yet the model still lacks many
important properties of cortical spiking neurons.

C. Integrate-and-Fire-or-Burst

Smith and co-authors [24] suggested an improvement -
integrate-and-fire-or-burst (I&FB) model

v′ = I + a− bv + gH(v − vh)h(vT − v)
if v = vthresh, thenv ← c

h′ =
{ −h/τ− if v > vh

(1− h)/τ+ if v < vh

to model thalamo-cortical neurons. Hereh describes the inac-
tivation of the calcium T-current,g, vh, vT, τ+, and τ− are
parameters describing dynamics of the T-current, andH is the
Heaviside step function.

Having this kind of a second variable creates the possibility
for bursting and other interesting regimes summarized in
Fig. 2. But this comes with a price: It takes between 9 and 13
operations (depending on the value ofv) to simulate 1 ms of
the model.
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D. Resonate-and-Fire

The resonate-and-fire neuron [16] is a two-dimensional
analogue of the I&F neuron

z′ = I + (b + ıω)z , if Im z = athresh, thenz ← z0(z)

where the real part of the complex variablez is the membrane
potential. Hereb, ω, andathresh are parameters, andz0(z) is
an arbitrary function describing activity-dependent after-spike
reset. The resonate-and-fire model is simple and efficient – it
takes 10 operations to simulate 1 ms. When the frequency
of oscillation ω = 0, it becomes an integrator. Its neuro-
computational properties are summarized in Fig. 2.

E. Quadratic Integrate-and-Fire

An alternative to the leaky I&F neuron is the quadratic
I&F neuron, also known as the theta-neuron [3], [2] or the
Ermentrout-Kopell canonical model [10] (when it is written
in a trigonometric form). We present it here in the form [19]

v′ = I + a(v − vrest)(v − vthresh) ,

if v = vpeak, thenv ← vreset,

wherevrest andvthresh are the resting and threshold values of
the membrane potential. This model is canonical in the sense
that any Class 1 excitable system described by smooth ODEs
can be transformed into this form by a continuous change of
variables [18]. It takes only 7 operations to simulate 1 ms
of the model, and this should be the model of choice when
one simulates large-scale networks of integrators. Unlike its
linear analogue, the quadratic integrate-and-fire neuron has
spike latencies, activity-dependent threshold (which isvthresh

only whenI = 0), and bistability of resting and tonic spiking
modes.

F. Spiking Model by Izhikevich (2003)

All of the responses in Fig. 1 were obtained using a simple
model of spiking neurons proposed recently by Izhikevich [15]

v′ = 0.04v2 + 5v + 140− u + I (1)

u′ = a(bv − u) (2)

with the auxiliary after-spike resetting

if v ≥ +30 mV, then

{
v ← c
u ← u + d .

(3)

Here variablev represents the membrane potential of the
neuron andu represents a membrane recovery variable, which
accounts for the activation of K+ ionic currents and inactiva-
tion of Na+ ionic currents, and it provides negative feedback to
v. After the spike reaches its apex (+30 mV), the membrane
voltage and the recovery variable are reset according to the
equation (3). Ifv skips over 30, then it first is reset to 30,
and then toc so that all spikes have equal magnitudes. The
part 0.04v2 + 5v + 140 is chosen so thatv has mV scale and
the time has ms scale. Geometrical derivation of the model
based on fast and slow nullclines can be found the manuscript
“Dynamical Systems in Neuroscience” [11].

The model can exhibit firing patterns of all known types
of cortical neurons with the choice of parametersa, b, c,
and d given in Ref. [15]. It takes only 13 floating point
operations to simulate 1 ms of the model, so it is quite
efficient in large-scale simulations of cortical networks. When
(a, b, c, d) = (0.2, 2,−56,−16) and I = −99, the model has
chaotic spiking activity, though the integration time stepτ
should be small to achieve adequate numerical precision.

We stress that +30 mV in (3) is not a threshold, but the
peak of the spike. The threshold value of the model neuron
is between -70 mV and -50 mV, and it is dynamic, as in
biological neurons. To build intuition and understanding of
the dynamics of the model, the reader is advised to download
an interactive MATLAB tutorial program from the author’s
webpage and play with the model and its parameters. In par-
ticular, the reader could explore all the 20 neuro-computational
properties in Fig. 1.

G. FitzHugh-Nagumo

The parameters in the FitzHugh-Nagumo model [4]

v′ = a + bv + cv2 + dv3 − u

u′ = ε(ev − u)

can be tuned so that the model describes spiking dynamics
of many resonator neurons. Its neuro-computational properties
are summarized in Fig. 2. Since one needs to simulate the
shape of each spike, the time step in the model must be
relatively small, e.g.,τ = 0.25 ms. It takes 18 floating point
operations per 0.25 ms, hence 72 operations per 1 ms of
simulation. Since the model is a two-dimensional system of
ODEs without a reset, it cannot exhibit autonomous chaotic
dynamics or bursting. Adding noise to this or some other two-
dimensional models allows for stochastic bursting.

H. Hindmarsh-Rose

The Hindmarsh-Rose model of thalamic neuron [23] can be
written in the general form

v′ = u− F (v) + I − w

u′ = G(v)− u

w′ = (H(v)− w)/τ

whereF , G, andH are some functions. Depending on their
choice, the model can in principle exhibit all of the neuro-
computational properties in Fig. 1. The problem is of course
how to find the functions to model, say RS or LTS neurons. Let
us assume that this problem is somehow solved and that the
functions are polynomials of the third degree (in the best case).
Since we need to simulate the shape of the action potential,
the maximal time step is 0.25 ms. Since it takes 30 floating
point operations per 0.25 ms of simulation time, it would take
120 operations to simulate 1 ms of the model. Again, this is
an optimistic assessment that might never be achieved.
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Fig. 2. Comparison of the neuro-computational properties of spiking and bursting models; see Fig. 1. “# of FLOPS” is an approximate number of floating
point operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time span. Each empty square indicates the property that the
model should exhibit in principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters within a reasonable period
of time.

I. Morris-Lecar

Morris and Lecar [21] suggested a simple 2-dimensional
model to describe oscillations in barnacle giant muscle fiber.
Because it has biophysically meaningful and measurable pa-
rameters, the model became quite popular in computational
neuroscience community. It consists of a membrane potential
equation with instantaneous activation of Ca current and an
additional equation describing slower activation of K current

CV̇ = I−gL(V −VL)−gCam∞(V )(V −VCa)−gKn(V −VK)

ṅ = λ(V )(n∞(V )−n)

where

m∞(V ) = 1/2{1 + tanh[(V − V1)/V2]}
n∞(V ) = 1/2{1 + tanh[(V − V3)/V4]}

λ(V ) = λ̄ cosh[(V − V3)/(2V4)]

with parameters:C = 20 µF/cm2, gL = 2 mmho/cm2,
VL = −50 mV, gCa = 4 mmho/cm2, VCa = 100 mV, gK = 8
mmho/cm2, VK = −70 mV, V1 = 0 mV, V2 = 15 mV,
V3 = 10 mV, V4 = 10 mV, λ̄ = 0.1 s−1, and applied current
I (µA/cm2).

The model can exhibit various types of spiking, but could
exhibit tonic bursting only when an additional equation is
added, e.g., slow inactivation of Ca current. In this case
the model becomes equivalent to the Hodgkin-Huxley model
discussed below (both have transient inward and persistent
outward currents).

Because one needs to simulate the shape of the action
potential in the Morris-Lecar model, the time step must be
significantly smaller than 1 ms. We found thatτ = 0.1 ms is
the largest step that gives reasonable results when the model
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is used to simulate cortical spiking neurons. Since the model
involves hyperbolic tangents and exponents, it takes around
60 floating point operations to evaluate one 0.1 ms time step,
which leads to 600 operations per 1 ms of simulation.

J. Wilson Polynomial Neurons

Hugh Wilson [25] suggested to model cortical neurons using
polynomial equations. His model consists of 4 differential
equations, which we do not provide here. It can exhibit all
neuro-computational properties in Fig. 1 provided that the
parameters are chosen appropriately, which is not an easy task.
The suggested time step in the model was 0.1 ms, though it
could be pushed up to 0.25 ms without significant loss of
precision or noticeable distortion of the shape of the action
potential. It takes 45 floating point operations to evaluate 0.25
ms of the model, hence 180 operations per 1 ms.

K. Hodgkin-Huxley

The Hodgkin-Huxley model [9] is one of the most important
models in computational neuroscience. It consists of 4 equa-
tions and tens of parameters, not provided here, describing
membrane potential, activation of Na and K currents, and
inactivation of Na current. Though the model has quite limited
behavior for original values of parameters, it can actually
exhibit all properties in Fig. 1 if the parameters are tuned.

In general, scientists refer to all conductance-based models
as being of the Hodgkin-Huxley-type. Such models are im-
portant not only because their parameters are biophysically
meaningful and measurable, but also because they allow us to
investigate questions related to synaptic integration, dendritic
cable filtering, effects of dendritic morphology, the interplay
between ionic currents, and other issues related to single cell
dynamics.

The model is extremely expensive to implement. It takes
120 floating point operations to evaluate 0.1 ms of model time
(assuming that each exponent takes only 10 operations), hence
1200 operations per 1 ms. Thus, one can use the Hodgkin-
Huxley formalism only to simulate a small number of neurons
or when simulation time is not an issue.

IV. CONCLUSION

As the reader can see in Fig. 2, many models of spiking
neurons have been proposed. Which one to choose? The
answer depends on the type of the problem. If the goal is
to study how the neuronal behavior depends on measurable
physiological parameters, such as the maximal conductances,
steady-state (in)activation functions and time constants, then
the Hodgkin-Huxley-type model is the best. Of course, you
could simulate only tens of coupled spiking neurons in real
time.

In contrast, if you want to simulate thousands of spiking
neurons in real time with 1 ms resolution, then there are plenty
of models to choose from. The most efficient is the integrate-
and-fire model. However, the model cannot exhibit even the
most fundamental properties of cortical spiking neurons, and
for this reason it should be avoided by all means. The only

advantage of the integrate-and-fire model is that it is linear,
and hence amenable to mathematical analysis. If no attempts
to derive analytical results are made, then there is no excuse
for using this model in simulations.

The quadratic integrate-and-fire model is practically as
efficient as the linear one, and it exhibits many important
properties of real neurons, such as spikes with latencies, and
bistability of resting and tonic spiking modes. However, it is
one-dimensional and hence it cannot burst and cannot exhibit
spike frequency adaptation. Thus, it can be used in simulations
of cortical neural networks only when biological plausibility
is not a great concern.

If the goal is to understand the fine temporal structure of
cortical spike trains, and to use spike-timing as an additional
variable to understand how the mammalian neocortex pro-
cesses information, a spiking model that can exhibit all or
most of the 20 neuro-computational properties of biological
neurons summarized in Fig. 1 is required. The model recently
proposed by Izhikevich [15] was developed exactly for these
purposes. It is the simplest possible model that can exhibit all
the firing patterns in Fig. 1. Indeed, removal of the second
equation (2) makes it one-dimensional with no possibility for
bursting, removal of the termv2 makes it linear and equivalent
to the resonate-and-fire model.

The author has used the model to simulate a fully connected
network of 1,000 cortical spiking neurons in real time with
1 ms resolution using only modest computational resources
(1 GHz desktop PC; MATLAB code is provided in Ref. [15];
Using the C programming language, it is possible to speed up
simulations by the factor of twenty). The network exhibited
rhythms in the alpha and gamma frequency range, transient
and sustained spike synchrony, spindle waves, sleep oscilla-
tions, and other temporal phenomena.

This model was also used in a simulation of a network
of 100,000 spiking neurons with realistic cortical anatomy,
axonal delays, and spike-timing dependent synaptic plasticity
(STDP) [13]. Due to the interplay between spiking, plasticity,
and delays, the neurons self-organized intopolychronous(i.e.,
multiple-timing) groups that could generate persistent time-
locked firing patterns with millisecond precision. There are
many such polychronous groups co-existing at the same time.
In another study [12], we found that each neuron participates
in many polychronous groups, so that the total number of
groups the model could memorize can significantly exceed
the number of neurons, or even the number of synapses in the
network, resulting in unprecedented memory capacity.

In conclusion, having a network of computationally efficient
and biologically plausible cortical spiking neurons intercon-
nected according to the principles of known anatomy of the
neocortex should be the goal of every scientist exploring
information processing in the mammalian brain.
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