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Which Model to Use for Cortical Spiking Neurons?

Eugene M. Izhikevich

Abstract—We discuss the biological plausibility and computa- neurophysiologists inject pulses of dc-current via an electrode
tional efficiency of some of the most useful models of spiking and attached to the neuron and record its membrane potential. The
bursting neurons. We compare their applicability to large-scale jnyt current and the neuronal response are usually plotted
simulations of cortical neural networks. one beneath the other, as in Fig. 1A. While the input is on,

Index Terms—Hodgkin-Huxley, quadratic integrate-and-fire, the neuron continues to fire a train of spikes. This kind of
PCNN, spike-timing, chaos behavior, called tonic spiking, can be observed in the three

types of cortical neurons: regular spiking (RS) excitatory
I. INTRODUCTION neurons, low-threshold spiking (LTS) and fast spiking (FS)

URING last few years we have witnessed a shift d:ph?bitory neurons [_1], [6]. Cpntinupus firing of such neurons
Dthe emphasis in the artificial neural network commdndicate that there is a persistent input.

nity toward spiking neural networks. Motivated by biological

discoveries, many studies (see this volume) consider pulge-phasic Spiking

coupled neural networks with spike-timing as an essentialA i | inal i h f th
component in information processing by the brain. neuron may fire only a single spike at the onset of the

In any study of network dynamics, there are two crucidfPut as in Fig. 1B, and remain quiescent afterwards. Such a

issues: (1) what model describes spiking dynamics of ca@sponse is called phasic spiking, and it is useful for detection

neuron, and (2) how the neurons are connected. Inappropn% éhe beginning of stimulation.
choice of the spiking model or the connectivity may lead to
results having nothing to do with the information processing. Tonic Bursting

by the brain. In this paper we consider the first issue, i.e., WeS h the chatteri . "
compare and contrast various models of spiking neurons. ome neurons, such as the chattering neurons in cat neo-
In Sect. Il and Fig. 1 we review important neuro_cortex [7], fire periodic bursts of spikes when stimulated, as in
ig. 1C. The interburst (i.e., between bursts) frequency may

computational features of real neurons and their contributi '

to temporal coding and spike-timing information processing® 3 high as 50 Hz, and it is believed that such neurons

In Sect. lll we consider various models of spiking neurons a 8ntnbute to the gamma-frequency oscillations in the brain.
rank them according to (1) the number of neuro-computational

features they can reproduce, and (2) their implementation effi- phasic Bursting

ciency, i.e., the number of floating point operations (addition, . . . . .
multiplication, etc.) needed to simulate the model during a 1Slmllarly to the phasic spikers, some neurons are phasic

ms time span. The results of our comparison are summari% sters, as in Fig. 1D. Such neurons report the beginning of

in Fig. 2. We compare the utility of the models to large-sca ?rﬁtlmulatlonhby trans.mlttlhng arl]aur§t. he i f
simulations of cortical networks in Sect. IV. ere are three major hypothesis on the importance o

bursts in the brain: (1) Bursts are needed to overcome the
synaptic transmission failure and reduce neuronal noise [20].
(2) Bursts can transmit saliency of the input, because the
In Fig. 1 we review 20 of the most prominent featuresffect of a burst on the postsynaptic neuron is stronger than
of biological spiking neurons. The goal of this section is tthe effect of a single spike. (3) Bursts can be used for
illustrate the richness and complexity of spiking behavior @felective communication between neurons [14], where the
individual neurons in response to simple pulses of dc-curremterspike frequency within the bursts encodes the channel of
What happens when only tens (let alone billions) of suatommunication. A good model of a cortical neuronal network
neurons are coupled together is beyond our comprehensigannot neglect bursting neurons.
Using some of the models discussed in the next section, the
reader can simulate thousands of cortical neurons in real time ] o
with 1 ms resolution. E. Mixed Model (Bursting Then Spiking)
Intrinsically bursting (IB) excitatory neurons in mammalian
A. Tonic Spiking neocortex [1] can exhibit a mixed type of spiking activity
, , . depicted in Fig. 1E. They fire a phasic burst at the onset of
Most neurons are excitable; that is, they are quiesCef, jation and then switch to the tonic spiking mode. It is

but can fire spikes when stimulated. To test this property.. jear what kind of computation such a neuron can do

The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Die&;'al additilon to detecting the onset and reporting the extent of
CA, 92121, http://iwww.nsi.edu/users/izhikevich, Eugene.lzhikevich@nsi.edstimulation.

II. NEURO-COMPUTATIONAL FEATURES



IEEE TRANS. ON NEURAL NETWORKS (SPECIAL ISSUE ON TEMPORAL CODING), IN PRESS, SEPTEMBER 2004 2

F. Spike Frequency Adaptation M. Rebound Spike

The most common type o excitatory neuron in mammahgn When a neuron receives and then is released from an

ne.(I)(corte>_<,h ndamely the ;egular spiking (RS) cell, fLres.ton fihibitory input, it may fire a post-inhibitory (rebound) spike,
spikes wit | decreasing requency, as in Fig. 1,F' T _at IS, & in Fig. 1M. This phenomenon is related to the anodal break
frequency is relatively high at the onset of stimulation, an citation in excitable membranes. Many spiking neurons can

then it adapt_s. Low-threshold_Spiking (LTS) inhibitory neuro re in response to brief inhibitory inputs thereby blurring the
also have this property. The interspike frequency of such ce Bference between excitation and inhibition
may encode the time elapsed since the onset of the input. '

G. Class 1 Excitability N. Rebound Burst
. Rebound Burs

The frequency of tonic spiking of neocortical RS excitatory
neurons depends on the strength of the input, and it maySome neurons, including the thalamo-cortical cells, may
span the range from 2 Hz to 200 Hz, or even greater. Tkige post-inhibitory bursts, as in Fig. IN. It is believed that
ability to fire low-frequency spikes when the input is weakuch bursts contribute to the sleep oscillations in the thalamo-
(but superthreshold) is called Class 1 excitability [8], [17kortical system.
[22]. Class 1 excitable neurons can encode the strength of the
input into their firing rate, as in Fig. 1G.

H. Class 2 Excitability O. Threshold Variability

Some neurons cannot fire |ow-frequency Spike trains; ThatA common misconception in the artificial neural network
is, they are either quiescent or fire a train of spikes with @mmunity is the belief that spiking neurons have a fixed
certain relatively large frequency, say 40 Hz, as in Fig. 1Holtage threshold. It is well-known that biological neurons
Such neurons are called Class 2 excitable [8], [17], [22]. Thdigve a variable threshold that depends on the prior activity of

firing rate is a poor predictor of the Strength of Stimu|ation_the neurons. In Fig. 1-O we first stimulate a neuron with a brief
excitatory pulse of current that produces 10 mV depolarization.

I. Spike Latency The neuron does not fire, hence the input is subthreshold.

Most cortical neurons fire spikes with a delay that depend$'€", We apply a brief inhibitory input and then exactly the
on the strength of the input signal. For a relatively weak b§g@Me “subthreshold” pulse of current. The neuron fires the
superthreshold input the delay, also called spike latency, ¢3gfond time because its “threshold” was lowered by the pre-
be quite large, as in Fig. 11. The RS cells in mammalian cort&€ding inhibitory input. Hence, the same 10 mV depolarization
can have latencies of tens of milliseconds. Such latencigd? be subthreshold or superthreshold depending on the prior

provide a spike-timing mechanism to encode the strength agtivity. Interestingly, a preceding excitatory pulse might raise
the input. the threshold and make the neuron less excitable.

J. Subthreshold Oscillations

Practically every brain structure has neurons capable Bf Bistability of Resting and Spiking States
exhibiting oscillatory potentials, as in Fig. 1J. The frequency

f h lati I ! tant rol d h Some neurons can exhibit two stable modes of operation:
of such osciliations play an important role and suc neuropésting and tonic spiking (or even bursting). An excitatory or
act as band-pass filters, as we discuss next.

inhibitory pulse can switch between the modes, as in Fig. 1P,
thereby creating an interesting possibility for bistability and
] short-term memory. Notice that to switch from the tonic
Due to the resonance phenomenon, neurons having oSgfliking to resting mode, the input must arrive at an appropriate

latory potentials can respond selectively to the inputs haVi%ase of oscillation, thereby emphasizing the importance of
frequency content similar to the frequency of subthreshold O§pike-timing in such information processing.

cillations. Such neurons can implement frequency-modulated
(FM) interactions and multiplexing of signals [14], [16]. In
Fig. 1K we stimulate such a neuron with two doublets (pair
of spikes) having different interspike frequencies. The neuro
responds only to the doublet whose frequency resonates witiafter firing a spike, the membrane potential of a neuron
the frequency of subthreshold oscillations. Such neurons @@y exhibit a prolonged after-hyperpolarization (called AHP)

K. Frequency Preference and Resonance

. Depolarizing After-Potentials

called resonators. as, e.g., in Fig. 1B,l or M, or a prolonged depolarized after-
. o ) potential (called DAP), as in Fig. 1Q. Such DAPs can appear
L. Integration and Coincidence Detection because of dendritic influence, because of a high-threshold

Neurons without oscillatory potentials act as integrator;wward currents activated during the spike, or because of an
They prefer high-frequency input; the higher the frequendgterplay between subthreshold voltage-gated currents. In any
the more likely they fire, as in Fig. 1L. This can be useful fotase, such a neuron has shortened refractory period and it
detecting coincident or nearly coincident spikes. becomes super-excitable.
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Fig. 1. Summary of the neuro-computational properties of biological spiking neurons. Shown are simulations of the same model, Eq. (1, 2), with different
choices of parameters. Each horizontal bar denotes 20 ms time interval. The MATLAB file generating the figure and containing all the parameters, as well
as interactive MATLAB tutorial program can be downloaded from the author’s website. This figure is reproduced with permission from www.izhikevich.com.
(Electronic version of the figure and reproduction permissions are freely available at www.izhikevich.com).
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R. Accommodation A. Integrate-and-Fire

Neurons are extremely sensitive to brief coincident inputs, One of the most widely used models in computational
but may not fire in response to a strong but slowly increasifguroscience is the leaky integrate-and-fire (I&F) neuron
input, as we illustrate in Fig. 1R. The slowly ramped cur-
rent in the figure does not elicit a spike, while a smaller
but sharply ramped current elicits a spike. During the slowherev is the membrane potential,is the input current, and
ramp, the inward currents have enough time to inactivate afd, ¢ and vinesh are the parameters. When the membrane
outward currents have enough time to activate, so the neuftentialv reaches the threshold valug.esn, the neuron is

accommodates, becomes less excitable and cannot gener&@ic o fire a spike, and is reset toc.

spike. The 1&F neuron is Class 1 excitable; it can fire tonic
spikes with constant frequency, and it is an integrator. It is the
simplest model to implement when the integration time step

S. Inhibition-Induced Spiking is 1 ms. Indeed, the iteration(t+ 1) = v(t) + (I +a—buv(t))

A bizarre feature of many thalamo-cortical neurons is th%%kness, Z?Cly) ‘:)Iﬂgaf)':g Egﬂ;gﬁgﬁ“%& &?:?'Sﬁg;g;iﬁ“ca‘

they are quiescent w_hep 'there_ Is no inpu.t,' but fire wh ecause I&F has only one variable, it cannot have phasic
hyperpolarized by an inhibitory input or an injected curren iking, bursting of any kind, rebound responses, threshold

ijr\rlila?]t"Eftﬁ(/zgtiéntrf:ag.h-lc:sdr;mts Q:éapdeerlisngig\?:;i t?;é?d?ﬁ _(#iabil.ity, bistability of attrgctors, or autonomou; chaotic
current, leading to tonic spiking dynamics. I_3ecause of the fixed t_hre_shol_d, the_ sp|kes_do not

' ' have latencies. In summary, despite its simplicity, I&F is one
of the worst models to use in simulations, unless one wants
to prove analytical results.

vV=I14+a—bv, if v > Vihresh, thenv «— ¢

T. Inhibition-Induced Bursting

Instead of spiking, a thalamo-cortical neuron can fire tonjg Integrate-and-Fire with Adaptation

bursts of spikes in response to a prolonged hyperpolarization . . . .
as in Fig. 1T. It is believed that such bursting takes pIaceThe I&F model is one-dimensional, hence it cannot burst

during spindle wave oscillations in the thalamo-cortical systetfﬁ ?f;:ve.other prope(;t:gs of Comif’ﬂ neurons. One may think
and it plays an important role in sleep rhythms. at having a second finear equation

v = T4+a—bv+g(d—o)
No model should exhibit all these 20 neuro-computational q (ed(t) —g)/T

properties simultaneously simply because some of the prop- . . ,
erties are mutually exclusive. For example, a neuron canrﬁfﬁscr'b'ng activation dynamics of a high-threshold K current

be an integrator and a resonator at the same time. Howe " Make an improvement, e.g., endow the model with spike-
there are models that can easily be tuned to exhibit each siff@puency adaptation. Indeed, each firing increases the K
property. For example, all of the neuronal responses in Figagtivation gateg via Dirac delta-functions and produces

were obtained using a simple spiking model having 4 easﬁ’;? outward current that slows down the frequency of tonic
tunable parameters [15]. spiking. Simulations of this model take 10 floating point

operations per 1 ms time step, yet the model still lacks many
important properties of cortical spiking neurons.

IIl. SPIKING MODELS

Below we review some widely used models of spikingC - Integrate-and-Fire-or-Burst

and bursting neurons that can be expressed in the form offmith and co-authors [24] suggested an improvement -
ordinary differential equations (thus, we exclude the spikBtegrate-and-fire-or-burst (I&FB) model
response model [5]). In addition to the 20 neuro-computational /

; - v = I+4+a—bv+gHWw—vy)h(vr —v)
features reviewed above, we also consider whether the models .
have biophysically meaningful and measurable parameters, if v = Vthresn, thenv — ¢
and whether they can exhibit autonomous chaotic activity. | { A !f U > th
We start with the simplest models first. The summary of our (L=h)/rt if v <o
comparison is in Fig. 2. to model thalamo-cortical neurons. Héralescribes the inac-

Throughout this sectiom denotes the membrane potentiativation of the calcium T-currenty, vy, vr, 77, and7~ are
and v’ denotes its derivative with respect to time. All theparameters describing dynamics of the T-current, Anid the
parameters in the models are chosen so thhds mV scale Heaviside step function.
and the time has ms scale. To compare computational costHaving this kind of a second variable creates the possibility
we assume that each model, written as a dynamical systian bursting and other interesting regimes summarized in
z = f(x), is implemented using a fixed-step first-order Euldfig. 2. But this comes with a price: It takes between 9 and 13
methodx(t + 7) = x(¢t) + 7f(x(t)) with the integration time operations (depending on the valuewfto simulate 1 ms of
stepr chosen to achieve a reasonable numerical accuracy.the model.
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D. Resonate-and-Fire The model can exhibit firing patterns of all known types
The resonate-and-fire neuron [16] is a two-dimension§f cortical neurons with the choice of parameters,c,
analogue of the 1&F neuron and d given in Ref. [15]. It takes only 13 floating point

_ operations to simulate 1 ms of the model, so it is quite

2 =T+ (b+w)z, if Im 2 = apresn, thenz < 29(2)  efficient in large-scale simulations of cortical networks. When
where the real part of the complex variablés the membrane (a,b, & d) ~ .(0'2’2’ —56, ~16) and1 = —9, the m.odel has
chaotic spiking activity, though the integration time step

potentl_al. Here, “ andath.re?h are pa_lrameters, ang(z) is .should be small to achieve adequate numerical precision.
an arbitrary function describing activity-dependent after-spike ) )
{We stress that +30 mV in (3) is not a threshold, but the

reset. The resonate-and-fire model is simple and efficient — i

takes 10 operations to simulate 1 ms. When the frequerﬁ?/ak of the spike. The threshold value _of_ the mod_el neuron
IS” between -70 mV and -50 mV, and it is dynamic, as in

of oscillation w = 0, it becomes an integrator. Its neuro-> X IR .
computational properties are summarized in Fig. 2. biological neurons. To build intuition a}nd understandmg of
the dynamics of the model, the reader is advised to download

an interactive MATLAB tutorial program from the author’s

E. Quadratic Integrate-and-Fire webpage and play with the model and its parameters. In par-
An alternative to the leaky I&F neuron is the quadratiticular, the reader could explore all the 20 neuro-computational

I&F neuron, also known as the theta-neuron [3], [2] or thproperties in Fig. 1.

Ermentrout-Kopell canonical model [10] (when it is written

in a trigonometric form). We present it here in the form [19]

G. FitzZHugh-Nagumo

U/ =1+ G(U - Urest)(’v - Uthresh) P g g
) The parameters in the FitzHugh-Nagumo model [4]
if v= Upeak: thenv « Ureset

wherewv,qs; anduynresn are the resting and threshold values of Vo= atbuter’ +dv’—u

the membrane potential. This model is canonical in the sense u = elev—u)

that any Class 1 excitable system described by smooth ODEs

can be transformed into this form by a continuous change @in be tuned so that the model describes spiking dynamics
variables [18]. It takes only 7 operations to simulate 1 ntf many resonator neurons. Its neuro-computational properties
of the model, and this should be the model of choice whee summarized in Fig. 2. Since one needs to simulate the
one simulates large-scale networks of integrators. Unlike ghape of each spike, the time step in the model must be
linear analogue, the quadratic integrate-and-fire neuron hatatively small, e.g.7 = 0.25 ms. It takes 18 floating point
spike latencies, activity-dependent threshold (whichjs.s, ~ Operations per 0.25 ms, hence 72 operations per 1 ms of

only whenI = 0), and bistability of resting and tonic spikingsimulation. Since the model is a two-dimensional system of

modes. ODEs without a reset, it cannot exhibit autonomous chaotic
dynamics or bursting. Adding noise to this or some other two-
F. Spiking Model by Izhikevich (2003) dimensional models allows for stochastic bursting.

All of the responses in Fig. 1 were obtained using a simple
model of spiking neurons proposed recently by Izhikevich [13] indmarsh-Rose

o 2
v = 0.040" + 50+ 140 —u + 1 @) The Hindmarsh-Rose model of thalamic neuron [23] can be
v = a(bv—u) (2) written in the general form
with the auxiliary after-spike resetting v = u—F@)+I-w
: Ve v o= GW)—u
|fv2+30mv,then{u<_u+d' 3) / (v)

w = (H@Ww)—w)/T

Here variablev represents the membrane potential of the

neuron and: represents a membrane recovery variable, whiethere F', G, and H are some functions. Depending on their
accounts for the activation of Kionic currents and inactiva- choice, the model can in principle exhibit all of the neuro-
tion of Na* ionic currents, and it provides negative feedback tmomputational properties in Fig. 1. The problem is of course
v. After the spike reaches its apex (+30 mV), the membrahew to find the functions to model, say RS or LTS neurons. Let
voltage and the recovery variable are reset according to tie assume that this problem is somehow solved and that the
equation (3). Ifv skips over 30, then it first is reset to 30functions are polynomials of the third degree (in the best case).
and then toc so that all spikes have equal magnitudes. THaince we need to simulate the shape of the action potential,
part0.04v% + 5v + 140 is chosen so that has mV scale and the maximal time step is 0.25 ms. Since it takes 30 floating
the time has ms scale. Geometrical derivation of the modmbint operations per 0.25 ms of simulation time, it would take
based on fast and slow nullclines can be found the manusci20 operations to simulate 1 ms of the model. Again, this is
“Dynamical Systems in Neuroscieh¢el]. an optimistic assessment that might never be achieved.
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Wilson =-+|+|+ +(+ |+ | |+ |(F|+ |+ + [+ 180
Hodgkin-Huxley +(+ |+ |+ + |+ |+ |+ FH| |+ |F (||| ||+ + | 1200

Fig. 2. Comparison of the neuro-computational properties of spiking and bursting models; see Fig. 1. “# of FLOPS” is an approximate number of floating
point operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time span. Each empty square indicates the property that the
model should exhibit in principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters within a reasonable period
of time.

I. Morris-Lecar

Morris and Lecar [21] suggested a simple 2-dimensional
model to describe oscillations in barnacle giant muscle fib(w!th parameters:C
Because it has biophysically meaningful and measurable ﬁ/é—: —50 MV, gca
rameters, the model became quite popular in computatioﬁ%WhO/C"?' Vk 5 ,

=10mV, V, =10 mV, A = 0.1 s7*, and applied current

neuroscience community. It consists of a membrane potent‘éi 5
4 uAlcm?).

equation with instantaneous activation of Ca current and . ) o
additional equation describing slower activation of K current 11€ model can exhibit various types of spiking, but could
exhibit tonic bursting only when an additional equation is

added, e.g., slow inactivation of Ca current. In this case

20 pFlem?, gr, 2 mmho/cnt,
= 4 mmho/cn?, Vg, = 100 mV, gk = 8
—70 mV, ; 0mv, Vo, = 15 mV,

Vo= ){;QL(V}YL)7gcam°°(v)(vac‘"‘)79Kn(v7VK) the model becomes equivalent to the Hodgkin-Huxley model
" (V) (oo (V) —n) discussed below (both have transient inward and persistent
where outward currents).

Because one needs to simulate the shape of the action

moo(V) = 1/2{1 +tanf{(V = V1)/Va]} potential in the Morris-Lecar model, the time step must be
neo(V) = 1/2{1+tanf{(V —V3)/Vi]} significantly smaller than 1 ms. We found that= 0.1 ms is
AV) = AcosH(V —V3)/(2V4)] the largest step that gives reasonable results when the model
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is used to simulate cortical spiking neurons. Since the modelvantage of the integrate-and-fire model is that it is linear,
involves hyperbolic tangents and exponents, it takes aroumadd hence amenable to mathematical analysis. If no attempts
60 floating point operations to evaluate one 0.1 ms time steép,derive analytical results are made, then there is no excuse
which leads to 600 operations per 1 ms of simulation. for using this model in simulations.

The quadratic integrate-and-fire model is practically as
efficient as the linear one, and it exhibits many important

k ) _properties of real neurons, such as spikes with latencies, and
Hugh Wilson [25] suggested to model cortical neurons usirigeapility of resting and tonic spiking modes. However, it is

polynomial equations. His model consists of 4 differentiglye_gimensional and hence it cannot burst and cannot exhibit
equations, which we do not provide here. It can exhibit allye frequency adaptation. Thus, it can be used in simulations

neuro-computational properties in Fig. 1 provided that thg corical neural networks only when biological plausibility
parameters are chosen appropriately, which is not an easy task ot 4 great concern.

The suggested time step in the model was 0.1 ms, though i the goal is to understand the fine temporal structure of

could be pushed up to 0.25 ms without significant 10SS @fical spike trains, and to use spike-timing as an additional
precision or noticeable distortion of the shape of the actiQR iaple to understand how the mammalian neocortex pro-
potential. It takes 45 floating point operations to evaluate 0.285ses information, a spiking model that can exhibit all or
ms of the model, hence 180 operations per 1 ms. most of the 20 neuro-computational properties of biological

neurons summarized in Fig. 1 is required. The model recently
K. Hodgkin-Huxley proposed by Izhikevich [15] was developed exactly for these

The Hodgkin-Huxley model [9] is one of the most importan?“rp9$es' It is the sjmp]est possible model that can exhibit all
models in computational neuroscience. It consists of 4 eqdd€ firing patterns in Fig. 1. Indeed, removal of the second
-bﬁ%uanon (2) makes it one-dimensional with no possibility for
membrane potential, activation of Na and K currents, aryirsting, removal of the term? makes it linear and equivalent

inactivation of Na current. Though the model has quite limitet® the resonate-and-fire model. _
behavior for original values of parameters, it can actually The author has used the model to simulate a fully connected

exhibit all properties in Fig. 1 if the parameters are tuned. N€twork of 1,000 cortical spiking neurons in real time with
In general, scientists refer to all conductance-based modg|&nS resolution using only modest computational resources
as being of the Hodgkin-Huxley-type. Such models are inyl GHz desktop PC; MATLAB code is provided in Ref. [15];

portant not only because their parameters are biophysica§ind the C programming language, it is possible to speed up

meaningful and measurable, but also because they allow us{gulations by the factor of twenty). The network exhibited

investigate questions related to synaptic integration, dendriffythms in the alpha and gamma frequency range, transient
cable filtering, effects of dendritic morphology, the interpla"d Sustained spike synchrony, spindle waves, sleep oscilla-

between ionic currents, and other issues related to single di4ns: and other temporal phenomena. ,

dynamics. This model was also used in a simulation of a network
The model is extremely expensive to implement. It také¥ 100,000 spiking neurons with realistic cortical anatomy,

120 floating point operations to evaluate 0.1 ms of model tinfgonal delays, and spike-timing dependent synaptic plasticity

(assuming that each exponent takes only 10 operations), hebeePP) [13]- Due to the interplay between spiking, plasticity,

1200 operations per 1 ms. Thus, one can use the Hodgkifd delays, the neurons self-organized ipodychronougi.e.,

Huxley formalism only to simulate a small number of neurorf@Ultiple-timing) groups that could generate persistent time-
or when simulation time is not an issue. locked firing patterns with millisecond precision. There are

many such polychronous groups co-existing at the same time.
In another study [12], we found that each neuron participates
in many polychronous groups, so that the total number of
As the reader can see in Fig. 2, many models of spikinffoups the model could memorize can significantly exceed
neurons have been proposed. Which one to choose? the number of neurons, or even the number of synapses in the
answer depends on the type of the problem. If the goal igtwork, resulting in unprecedented memory capacity.
to study how the neuronal behavior depends on measurablén conclusion, having a network of computationally efficient
physiological parameters, such as the maximal conductancgsd biologically plausible cortical spiking neurons intercon-
Steady—state (in)activation functions and time constants, thﬁ@cted according to the princip|es of known anatomy of the
the Hodgkin-Huxley-type model is the best. Of course, yoyeocortex should be the goal of every scientist exploring

could simulate Only tens of Coupled Splklng neurons in remformation processing in the mammalian brain.
time.

In contrast, if you want to simulate thousands of spiking
neurons in real time with 1 ms resolution, then there are plenty
of models to choose from. The most efficient is the integrate-Niraj S. Desai, Anil K. Seth, John R. Iversen, Yanging Chen,
and-fire model. However, the model cannot exhibit even tldeffrey L. McKinstry, Elisabeth C. Walcott, Raul Muresan,
most fundamental properties of cortical spiking neurons, afhjesh Kavasseri, and Michael Stich read the first draft of
for this reason it should be avoided by all means. The onilge manuscript and made a number of useful suggestions.
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