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Persistent neural activity is observed in many systems, and is

thought to be a neural substrate for holding memories over time

delays of a few seconds. Recent work has addressed two issues.

First, how can networks of neurons robustly hold such an active

memory? Computer systems obtain significant robustness to

noise by approximating analogue quantities with discrete digital

representations. In a similar manner, theoretical models of

persistent activity in spiking neurons have shown that the most

robust and stable way to store the short-term memory of a

continuous parameter is to approximate it with a discrete

representation. This general idea applies very broadly to

mechanisms that range from biochemical networks to single

cells and to large circuits of neurons. Second, why is it commonly

observed that persistent activity in the cortex can be strongly

time-varying? This observation is almost ubiquitous, and

therefore must be taken into account in our models and

our understanding of how short-term memories are held in

the cortex.
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Introduction
The problem at the core of memory formation is to

establish a representation of a stimulus that persists after

the stimulus is gone. When neural activity is not only

stimulus-selective but also persistent, outlasting the sti-

mulus that initially drove it, it can be used as a memory

representation of the stimulus. Such persistent, stimulus-

dependent activity is thought to be the neural substrate

for memories that last anywhere up to tens of seconds

[1–3], and has been observed in a wide variety of regions

of the nervous system [4–6]. For example, in the

prefrontal cortex of monkeys that are trained to perform

short-term memory tasks, persistent neural activity has

been interpreted as the basis of working memory, that is,

the ability to hold something ‘in mind’ for a few seconds

[1,3,7–10]. In the anterior dorsal nucleus of the rodent

thalamus (as well as in other brain areas), persistent

activity is thought to allow encoding of a memory of head

direction [11,12]. Additionally, in area I of the goldfish

hindbrain, which controls the motor system that drives

the eye muscles, persistent activity is interpreted as a

short-term memory of eye position that keeps the eyes

still between saccades [13–15].

For persistent neural activity to serve as memory, it

must be robust to distractors and noise, at least over

the period during which the organism requires the mem-

ory. Robustness to noise is thus a key issue for memory.

In a biological context, the memory system that gener-

ates persistent activity must also be robust to significant

variability in the components used to build it (even when

the components are noise-free). For example, it would be

unrealistic to expect a memory network to require 1%

precision in synaptic connection strengths. Another key

issue for biological memory, then, is robustness to impre-

cise components.

The two issues of robustness to noise and robustness to

imprecise components are important to all biological

memory systems at all levels from the subcellular to

the cellular to the cortical network. The first part of this

review presents the general conceptual framework that

underlies current and upcoming research in this area.

This framework, which uses concepts borrowed from

dynamical systems theory, is important because it applies

very broadly to all systems dedicated to memory.

When it comes to the particular case of persistent cortical

activity, however, the framework faces important chal-

lenges. Persistent activity is often found in cortical areas

that are involved in more than just the pure maintenance

of information. For example, persistent activity co-exists

with decision making and motor planning in the lateral

intraparietal cortex [4,16,17�], the frontal eye fields [18]

and the premotor cortex [19]. Persistent activity also co-

exists with expected reward coding and anticipation in

the prefrontal cortex [20–22]. In contrast to the static

representation assumed in the framework presented in

the first part of this review, the representation of short-

term memory information in prefrontal and other cortices

is often found to be strongly dynamic. That is to say that

firing rates, although persistently stimulus-dependent,
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can change markedly and systematically during the mem-

ory period. The second part of this review underscores the

observation of these dynamics: their ubiquity suggests

that rather than being peripheral to the memory process,

they may be central to it. These systematic dynamics

should therefore be incorporated into cortical models of

short-term memory.

Robustness to noise and imprecise
components
Stimulus-dependence in persistent activity is thought to

correspond to a state of the neural memory system in

which the system will remain (persist) even after the

stimulus is gone (Figure 1a). This state must be stable, in

the sense that the system must remain in this state even if

disturbed slightly by noise. For this to occur, there must

be forces that restore the system back to the stable state if

noise makes it stray slightly away. Let us imagine that

there is a function of the state of the system, which we

shall call L, and that the dynamics of the system are such

that L always tends to fall in value as time progresses.

The restoring forces around the stable point can then be

visualized as walls of L that form a well around that point.

Because L tends to decrease, once the system is in a state

inside the well, it will tend to decline to the lowest level

of the well and then stay there (Figure 1b). At least

locally around any stable fixed point, L can always be

defined. Hence we can always use it for the purpose of

visualization, even if further away from the stable points

(e.g. in the reddish brown regions in Figure 1) the precise

value of L may not actually be defined. A network of

neurons with two different persistent stable states can

thus be visualized as an L function (technically known as

a Lyapunov function) with two separate wells (Figure 1b).

By identifying the position the system’s state is in, it

is possible to decode the memory held in the system:

that is, if in well A, the memory is ‘A’; if in well B, the

memory is ‘B’.

A system with discrete wells can store the memory of one

of a set of discrete items [23–25]. However, parameters

that can take on a continuous range of values can also be

stored in short-term memory. For example, monkeys can

be trained to remember the intended direction of a

saccade when the response is delayed for a few seconds

[4,7,26]. This direction can, in principle, range from 08 to

3608. To visualize this as an L-function diagram, imagine

that the monkey is holding ‘458’ in memory. There must

therefore be a well for 458. As a position infinitesimally

close to 458 is also a possible memory, there must be

Figure 1
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Attractor shapes for persistent activity. (a) A schematic of the firing rate of a persistent, stimulus-dependent neuron. (b) An L function with two wells.

Here, the state variables (x and y axes) are plotted as the firing rates of two neurons but, in general, they are all the variables necessary to define

the system’s state. They could thus include, for example, Ca2þ concentration in dendrites. (c) A ring attractor (see text). (d) Contour plot for the

ring attractor (c). Each position in the ring codes for a different direction. (e) A line attractor. (f) Contour plot for the line attractor (e). Each position on

the line codes for a value of the stimulus being held in memory (e.g. frequency of a vibrotactile stimulus [10]). (g) and (h) Slight imperfections (g) or a

slight tilt (h) destroy the flat bottom of a continuous attractor.
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another well, infinitesimally close to the 458 one; and

there must be another well infinitesimally close to that

one. This must continue all the way around the circle of

directions, to 3608, and then back round to 458. In short,

there must be a continuum of wells (i.e. minima) of L that

loops back onto itself. The only way for this to occur is for

the continuous set of wells to carve out a valley that forms

a loop (Figure 1c). Different positions along the bottom of

this valley, called a ‘ring attractor’, represent all the

different possible memories for direction [27–32].

Not all continuous parameters are defined in a periodic

space (that is, a space that loops back onto itself, in the

sense that 3608 is the same as 08). For example, subjects

may be asked to remember the frequency of a vibrotactile

stimulus [10]. Vibration frequency is continuous but it is

not defined in a periodic space. In this case, the con-

tinuum of minima in the L-function diagram forms a

valley that doesn’t loop back on itself (Figure 1e). Valleys

of this kind are called ‘line attractors’. This conceptual

approach, as applied to the short-term memory of eye

position, was clearly described by Seung [14].

Consequences of perfect
continuous attractors
The L-function diagram allows us to deduce important

general properties of continuous attractors. First, as

described above, all points along the line that describes

the bottom of the attractor must be minima of L. This

means that all of these points must all have the same value

of L, as no point could be lower than any of its neighbors.

In turn, this leads us to the conclusion that there are no

restorative forces along the bottom of the valley — the

walls of L represent the restorative forces. Random noise

is thus equally likely to move the system up or down the

line of a continuous attractor, and the system moves in a

random walk (diffusion). Systems that are based on net-

works of large numbers of neurons may reduce noise by

averaging over neurons, and therefore reduce the speed

with which the system state randomly drifts away from its

original position. Despite this, the speed of the random

walk will never be exactly zero.

The construction of continuous attractors presents sig-

nificant difficulties. The requirement that L be exactly

the same along the bottom of the valley is, in essence, a

perfect symmetry requirement: circular symmetry in the

case of the ring attractor (Figure 1c), and translational

symmetry in the case of the line attractor (Figure 1e). Any

departure from this perfect symmetry can substantially

perturb a continuous attractor. For example, slight imper-

fections along the bottom of the attractor (Figure 1g) will

mean that only a few points along the line are minima of

L, and therefore stable. Even a very slight tilt on the

overall shape of the attractor would lead to a steady drift

down its slope (Figure 1h). Different plasticity mechan-

isms may place the onus for symmetry on different

parameters, but it is an onus that cannot be entirely

avoided. Recent theoretical work has suggested that it

may be advantageous to place the symmetry onus on

cellular homeostasis parameters [33].

Determining how non-linear spiking neurons could inter-

connect so as to form a line attractor is a difficult problem.

In a landmark study [34], Seung and co-workers devised a

method to design a spiking neural network model that

approximates a line attractor. Their model successfully

replicated the main features of data recorded from per-

sistent neurons that encode eye position in goldfish.

However, this network also highlighted the construction

problems involved in building a line attractor. Changing

connection strength between the neurons by as little as

1% produced unacceptably rapid drifts in the predicted

eye position. In other words, even a slight tilt in the

attractor (Figure 1h) led the model to predict results that

were incompatible with behavior in the fish. Such preci-

sion in construction appears to be biologically unrealistic.

Recently, Koulakov et al. [35��] proposed a new class of

models that are based on many individually hysteretic

units. They combined analogue and digital aspects in an

attempt to alleviate both problems of robustness in con-

struction and robustness to noise. In their model, a

modification of up to 16% in connection strengths can

be allowed without loss of function. The ideas underlying

the robustness of this model are quite general, and form

the basis of several other models that are currently being

developed.

Relationship between hysteresis
and multistability
Hysteretic and multistable systems are intimately related.

The simplest multistable system that we can imagine is a

bistable one. In Figure 2a we show an example of an

L–function diagram with two wells. (For clarity of exposi-

tion, we have plotted L as a function of only one state

variable, which could, for example, be the firing rate of a

neuron.) Suppose the system is at rest, in the state marked

‘1’. Now imagine that as an input (e.g. an injected current)

increases, the system gets pulled to the right in the

L-function diagram, perhaps far enough to go all the

way up to the lip of the well (state 2). As shown in the

inset, firing rate increases smoothly from state 1 to state 2

as the input drive increases. However, if the input drive is

strong enough to push the system over the lip of the well,

the system will undergo an abrupt transition, moving from

the right edge of the first well (state 2) to the right edge of

the second well (state 3). There would, thus, be an abrupt

change of state accompanied by an abrupt increase in

firing rate. After this transition, releasing the input drive

will not bring the system back to state 1, but will leave it

at the bottom of the second well (state 4). To bring the

system back to state 1, a significant negative input drive is

required, a negative input drive that is enough to pull the
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system back over the barrier that separates the two wells.

When the firing rate is plotted as a function of input drive,

we find that the firing rate depends on the history of the

system, creating the two curves in the inset of Figure 1b,

one for increasing input drive, and the other for decreas-

ing input drive. Behavior that is history-dependent, and

remains so over long timescales, is the defining feature of

hysteretic systems.

The hysteretic continuum
A bistable system can only store a binary variable (the

choice of one of two wells), not a continuous one. Com-

pared to a continuous attractor, however, a bistable sys-

tem is very robust. The same slight disturbances that can

destroy the continuity of an attractor valley (represented

in Figure 1g,h as adding a little noise or tilt to the L
function) do not destroy the fundamental properties of

the bistable system, that is, the existence of two separate

wells. Can we keep the robustness properties of the

bistable system while allowing the storage of a continuous

variable? The answer to this question is ‘no’; as we have

shown in the previous section, continuity imposes proper-

ties of symmetry on L that necessarily render the system

fragile to disturbances. It is possible, however, to robustly

store a discrete approximation to a continuous variable.

Imagine a system in which there are many wells in the L
function rather than just two (Figure 2b). Suppose that

these wells are densely distributed over the same range of

firing rates as the two wells of Figure 2a. Instead of there

being a single hysteretic loop, as in the inset of Figure 2a,

there are now many hysteretic loops, each of which

describes a small jump in the firing rate (inset of

Figure 2b). The deeper the wells are, the wider the

hysteretic loop, and the more robust the system is to

disturbances. Even if the wells are deep, however, they

may be spaced very close to each other. Thus, although

any finite system will have a finite number of wells, the

wells may be so closely spaced as to allow the storage of a

very good approximation of a continuous variable. The

most familiar example of a non-neural hysteretic system

that appears to be continuous is that of digital computers.

We routinely use digital computers to represent contin-

uous variables — for example, when simulating

Hodgkin–Huxley models — yet internally, the represen-

tation of continuous variables is composed of a very high

density of discrete bits, each of which is stored as the state

of a bistable microsystem (a flip/flop).

Generality of the hysteretic
continuum concept
There are many different neural mechanisms that could

be used to implement a system of closely spaced wells, as

depicted in the schematic of Figure 2b. Theoretical

models have proposed forming a single large system with

many stable states out of a large collection of individually

bistable units that are weakly coupled together. (One of

Figure 2
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Hysteresis, bistability, and the discrete approximation to a

continuous attractor. (a) A system that has two wells in L will show

hysteresis (inset). (b) Many individual wells, arranged along a line, are

associated with many hysteretic loops (inset). The location of an

arbitrary position is approximated by choosing the nearest well,

and using that to encode the position. These wells are robust to

disruptions such as the noise or tilt illustrated in Figure 1g,h.

(c) A force to the right is visualized as a tilt of L to the right. As it

moves along the well, the system spends more time on the right-hand

side than on the left. This is conversely true for a force in the

opposite direction.
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the challenges, which we do not explore here, is to

structure the coupling between subunits so that the many

wells of the system are arranged into a single line; it is only

then that the system can be used as an integrator.)

Koulakov et al. [35��] initially proposed two possible

models for the formation of bistable units at the scale of

single cells or larger. One possibility used strong coupling

within small groups of neurons to make each group bis-

table. The other possibility used the voltage-dependence

of NMDA channels to make single neurons bistable [36].

Bistable subunits may also be formed at a scale smaller than

a single neuron. Recent in vitro work by Egorov and co-

workers [37��] has shown that individual neurons in entorh-

inal cortex slices are capable of displaying multistable

graded persistent activity, as long as the right chemical

environment is provided in the bath. This remarkable

result has been followed by theoretical work in which

individual bistable subunits are formed from compart-

ments of dendritic branches that contain voltage-depen-

dent Ca2þ channels [38,39]. Using a large number of such

bistable compartments per neuron, models of individual

neurons may be constructed to display many different

stable states, each with a different stable persistent firing

rate. One proposal arranged all the compartments in a

single line, as part of a single dendritic shaft. This spatial

arrangement was then part of the constraints that were used

to create a single line of densely arranged wells [39].

The power of the L function approach lies in its general-

ity: the basic concepts and results of Figures 1 and 2 are,

in essence, geometric. Thus, the idea that the storage of a

continuous variable is more robustly achieved using a

discrete approximation is one that applies across many

spatial and temporal scales, and across a broad range of

systems. In particular, this idea applies to memory sys-

tems that range from the biochemical basis of LTP in

single spines [40,41] to seconds of persistent activity in

single neurons [37��,39,42], to biochemical cellular mem-

ories in non-neural cells [43], to networks of neurons

[35��], and to modern computer memories. Hysteresis

and its link to robustness are likely to be central concepts

in research into persistent activity that codes for the

memory of continuous variables.

If the L-function concept is so general that it is not

specific to a particular mechanism, how can it be tested?

One general prediction is based on the existence of wells

with a finite (non-zero) width. Let us visualize input

pushing the system in the ‘ON’ or ‘OFF’ directions by

tilting the L function, either to the right (‘ON’) or to the

left (‘OFF’). If the system is moving smoothly in the ‘ON’

direction, it will tend to spend most of its time on the

right-hand side of the wells; if moving smoothly in the

‘OFF’ direction, it will spend most of its time on the left-

hand side of the wells. This will lead to a systematic

difference in firing rates (D f ) when the system is moving

in one direction compared to the other (Figure 2c): that is,

to a system-wide hysteresis [35��].

Dynamic representations of
short-term memory
We now turn to the second subject of this review. So far,

we have considered conceptual approaches to under-

standing stimulus-dependent activity that is ‘statically’

persistent. Once such a system is in a state that produces a

particular set of firing rates, the system stays there and

firing rates are fixed until an external signal terminates the

delay period. Assigning a meaning to a static and stable

system state is an attractive and simple approach to

conceptualizing the memory problem.

Nevertheless, we have known since the first reports of

persistent neural activity in the cortex [44,45] that the

firing rates of persistently active cortical neurons often

change systematically over the course of delay periods.

For example, Brody et al. [46�] trained monkeys to

remember a continuous scalar parameter — the frequency

of a mechanical vibration applied to a fingertip — over

delay periods that lasted a few seconds (Figure 3a). They

then recorded the responses of neurons in the prefrontal

cortex (PFC). Most of the neurons that fired during the

stimulus-dependent delay period had a strongly time-

varying response profile. Three-quarters of the neurons

were stimulus-dependent only during a part of the delay

period, generally either towards the end (33% of neurons,

dubbed ‘late’ neurons; Figure 3b) or the beginning

(31%, ‘early’ neurons, not shown). Only one-quarter of

the neurons had firing rates that persisted in being

stimulus-dependent throughout the entire delay period

(‘persistent’ neurons; Figure 3c). This pattern of results

might lead one to imagine that during long delay periods,

there are stretches of time, far from the start of the delay

period and far from its end, during which only the

‘persistent’ class of neurons have stimulus-dependent

activity. Thus, the apparently more static ‘persistent’

neurons might be a special set of neurons that are

uniquely responsible for actively maintaining a memory

during long delay periods. However, when ‘late’ neurons

were recorded both during a block of trials with a 3-s delay

period and during a subsequent block of trials with a 6-s

delay, they were found to stretch the timing of their

responses [46�]. This meant that the evolution of their

firing profiles took twice as long in trials with a 6-s delay

period (Figure 3b, lower panel) than in trials involving a

3-s delay period (Figure 3b, upper panel). Thus, long delay

periods do not isolate moments in time during which only

the ‘persistent’ neurons carry stimulus-dependent infor-

mation. This suggests that all three types of neurons,

‘early’, ‘persistent,’ and ‘late’, could play equally impor-

tant roles in representing and maintaining a memory.

The firing rates of ‘persistent’ neurons vary markedly and

systematically with time (e.g. Figure 3c [note y axes in
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lower panels]). A remarkably high fraction of the ‘persis-

tent’ neurons recorded by Brody et al. [46�], about 90%,

had firing rates that varied significantly over time during

the delay period (p < 0:001 in an ANOVA test). Only 3%

of neurons had reliably static (p > 0:1) firing rates. In

addition, neurons that had time-varying firing rates

(whether members of the ‘persistent’ or ‘late’ classes)

were as predictive of the animal’s ultimate response

choice as the few neurons with approximately static

persistent activity [46�]. Time-dependent neurons thus

seem to play a similar role to that played by time-inde-

pendent neurons in determining memory-based beha-

vior. Many other researchers have also reported time-

varying firing of neurons during delay periods (e.g.

[9,16,44,47�]). This pattern of firing appears to be an

almost ubiquitous characteristic of stimulus-dependent

delay period activity in the cortex. Taken together, these

results suggest that, in the cortex, the short-term memory

of the stimulus is mostly represented in neurons with

dynamic, not static, firing rates.

If the neurons that represent the memory of the stimulus

have firing rates that change with time, does this imply

that the memory itself is also changing? Not necessarily.

For example, the sum of the firing rates of neurons with

opposing time-dependent properties could produce a

static stimulus-dependent representation. Additionally,

the time-dependence of the firing rates could perhaps

explicitly encode time itself [48]. Knowing how much

time had elapsed since the stimulus would allow us

to determine the appropriate stimulus!firing-rate map

(i.e. the choice of lower panel in Figure 3c), and would

therefore allow us to correctly decode the stimulus from

the firing rate.

Continuous stimulus recoding
Some neurons in the PFC are known to code for an

expected reward, as well as for the memory of a past

stimulus [20,21,22,49]. This activity is often of a ‘ramp-

ing-up’ nature. When ramping-up, anticipatory encoding

is multiplexed with stimulus-dependent encoding, which

could lead to responses such as those illustrated in

Figure 3b. However, in a variant of their standard fre-

quency discrimination task, Brody et al. [46�] placed an

extra 3-s delay between the stimulus f2 and the reward

(green in Figure 3a). In this situation, there was no

immediate reward or motor act at the end of the first

delay period, and no trial-by-trial variation in the reward

to be encoded. Nevertheless, neurons with the same

temporal profiles of firing rate and stimulus-dependence

were found in the first delay period of the variant task and

in the delay period of the standard task. This included

ramping-up neurons and neurons with ‘late’ stimulus

dependence. Such neurons are thus not necessarily coding

for the anticipation of an immediately upcoming reward.

It has been suggested that the encoding of short-term

memories (separately from reward coding) in the PFC

may shift during the delay period from an encoding of the

stimulus itself (retrospective coding) to an encoding of a

stimulus-dependent expectation of what will occur at

the end of the delay period (prospective coding)

[50,51�]. These two types of encoding, retrospective
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Neurons in the prefrontal cortex (PFC) with persistent activity that is

both stimulus-dependent and systematically time-varying [10,46�].

(a) The monkeys’ task was to compare the frequencies of two

mechanical vibrations applied sequentially to a fingertip, and decide

which was the higher. In the standard task, the monkeys could respond

immediately after f2, and then get their reward if they were correct. In a

variant of the task, they were required to wait for an additional 3 s before

responding. (b) (Upper panel) Firing rate of a ‘late’ neuron during the f1

stimulus and delay period. The color code on the right indicates the

value of the f1 stimulus. (Lower panel) The same neuron was recorded

during a subsequent block of trials that had a 6-s delay period

between f1 and f2. (c) A ‘persistent’ neuron.
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and prospective, can be associated with ramping down

and ramping up activity, respectively. They may be

shared in the same neuron in different proportions at

different times during the delay period. This coding shift

has been termed ‘cross-temporal integration’ [51�].

A general description that could apply across several of

these different types of time-dependent responses is that,

during the delay period, the encoding of the stimulus may

be actively transformed into a representation that facil-

itates the task requirements of the end of the delay

period, whatever these may be. These requirements

range from reward coding for evaluation of reward and

behavior monitoring in some neurons and tasks to stimu-

lus recoding for comparison with upcoming stimuli (e.g.

comparison of stimuli f1 and f2 in Figure 3c) in others.

The key point about this view is that the goal of cortical

short-term memory processes is not seen as the static

storage of information about previous stimuli (as in the

first part of this review). Instead, it is seen as an essentially

dynamic process that uses stimulus information to antici-

pate and, most importantly, prepare the organism for

upcoming behavioral and cognitive task requirements.

Conclusions and outlook
Imparting robustness to graded memory systems by

building them out of many individually bistable hystere-

tic subunits is a promising idea for understanding the

basic mechanisms behind the active storage of short-term

memories of continuous variables.

In the cortex, however, persistent activity is often char-

acterized by being not only stimulus-dependent but also

time-varying. It may be that a few neurons with statically

persistent stimulus-dependent firing rates (in cortex or

elsewhere) are responsible for maintaining the represen-

tation of short-term memories. However, we suggest that

it is more likely that the representation is fundamentally a

dynamic one, with time-dependent neurons playing as

central a part as time-independent (static) ones. Time-

dependent firing may reflect participation in not just

memory storage but also preparation for anticipated com-

putations. Characterizing these computations, under-

standing their interaction with memory storage, and

modeling their dynamics [47�] is likely to be a necessary

and important part of elucidating the cortical mechanisms

for short-term memory [51�].
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