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Abstract The integrate-and-fire neuron model desc-
ribes the state of a neuron in terms of its membrane
potential, which is determined by the synaptic inputs
and the injected current that the neuron receives. When
the membrane potential reaches a threshold, an action
potential (spike) is generated. This review considers the
model in which the synaptic input varies periodically
and is described by an inhomogeneous Poisson process,
with both current and conductance synapses. The focus
is on the mathematical methods that allow the output
spike distribution to be analyzed, including first passage
time methods and the Fokker–Planck equation. Recent
interest in the response of neurons to periodic input has
in part arisen from the study of stochastic resonance,
which is the noise-induced enhancement of the signal-
to-noise ratio. Networks of integrate-and-fire neurons
behave in a wide variety of ways and have been used to
model a variety of neural, physiological, and psychologi-
cal phenomena. The properties of the integrate-and-fire
neuron model with synaptic input described as a tempo-
rally homogeneous Poisson process are reviewed in an
accompanying paper (Burkitt in Biol Cybern, 2006).
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1 Introduction

The integrate-and-fire neuron model has become widely
accepted as one of the canonical models for the study of
neural systems. The model provides a good description
of the subthreshold integration of synaptic inputs, which
occurs on a timescale that is slow in comparison to the
rapid spike generation. Until relatively recently most of
the stochastic models studied analytically in theoretical
neuroscience considered only the case of time-homo-
geneous synaptic input, for which there are a number
of well developed mathematical techniques, reviewed
in Burkitt (2006). A number of recent developments
have promoted interest in the analysis of the model with
periodic (i.e., inhomogeneous) synaptic input. The most
important has been the interest in stochastic resonance,
which is the enhancement of the output signal-to-noise
ratio in a system by the addition of noise (Gammaitoni
et al. 1998). The integrate-and-fire neuron model has
played an important role in exploring this phenom-
ena in neural systems. Other important developments
have arisen from modeling of auditory neural process-
ing, where neural responses show activity that is phase-
locked to periodic acoustical signals (Weiss 1966; Siebert
1970; Johnson 1980; Gummer 1991), and the study of
neuronal rhythms and oscillations (Singer 1993). Such
oscillations occur naturally in networks of intercon-
nected neurons (Strogatz 2000). This review focusses on
the analytical methods that are used to study inhomo-
geneous periodic synaptic input. These methods repre-
sent significant extensions to the techniques used for
the study of the model with homogeneous synaptic in-
put, but they provide only a partial description of the
behavior of the model. There is considerable scope for
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the continuing development of methods to analyze the
model with inhomogeneous synaptic input.

The integrate-and-fire neuron model is introduced
in Sect. 2, giving the membrane potential for injected
current and details of the synaptic input for current syn-
apses and conductance synapses. Stochastic models are
discussed in Sect. 3, including the Ornstein–Uhlenbeck
model, the Gaussian approximation, and the Fokker–
Planck equation.Techniques for analyzing the model
with inhomogeneous Poisson input and both current
and conductance synapses are presented. The spiking
rate and interspike interval distribution are presented
in Sect. 3.1, which involves the solution for the first
passage time problem using the renewal equation with
appropriate averaging over the initial phases from which
the integration starts. A perturbative approach using
the Fokker–Planck formalism for homogeneous back-
ground synaptic input together with small a amplitude
periodic synaptic input is outlined in Sect. 3.2. The appli-
cation of the integrate-and-fire neuron model in two do-
mains of neural information processing are reviewed:
stochastic resonance in Sect. 4 and the behavior of net-
works of neurons in Sect. 5.

2 The integrate-and-fire neuron model

The integrate-and-fire neuron model is described by the
dynamics of the neuron’s membrane potential, v(t),

Cm
dv(t)

dt
= −Cm

τm
[v(t) − V0] + Is(t) + Iinj(t) , (1)

where Cm is the membrane capacitance, V0 the resting
potential, τm the passive membrane time constant, Is(t)
a current describing the effect of synaptic input to the
neuron, and Iinj(t) a current injected into the neuron (by
an intracellular electrode). The first term on the right
is the current due to the passive leak of the membrane,
and the passive membrane time constant is related to
the neuron’s capacitance and leak resistance Rm of the
membrane potential by τm = Rm Cm. The notation used
throughout follows that in the accompanying review of
the integrate-and-fire neuron model with homogeneous
synaptic input (Burkitt 2006).

For subthreshold potentials, the response of the model
to periodic deterministic input is (Tuckwell 1988a)

v(t) = V0 + e−t/τm

∫ t

t0

Iinj(t′)
Cm

et′/τm dt′ , (2)

where it is assumed that the membrane potential at the
initial time t0 is at the resting potential v(t0) = V0.
When the membrane potential reaches the threshold
Vth a spike is generated and the membrane potential is

reset to its initial value Vreset. A number of authors have
examined the response of the model to periodic deter-
ministic input (Knight 1972a), including an examination
of the relationship between the phase locking of the out-
put spikes with the periodicity of the input (Scharstein
1979; Keener et al. 1981).

The main interest in the integrate-and fire neuron
model is with stochastic synaptic input. In the case of
current synapses, the synaptic current is described by

Is(t) = Cm

NE∑
k=1

aE,k SE,k(t) + Cm

NI∑
k=1

aI,k SI,k(t) . (3)

As in the case of homogeneous synaptic input, the excit-
atory and inhibitory synaptic inputs, SE,k(t) and SI,k(t),
are described as a series of δ-function inputs to each
synapse

SE,k(t) =
∑
tE,k

δ(t − tE,k) , SI,k(t) =
∑
tI,k

δ(t − tI,k) , (4)

where tE,k and tI,k are the times of the synaptic input
spikes for the excitatory and inhibitory synapses, respec-
tively. The input spiking rates are modeled as inhomoge-
neous Poisson processes with time-dependent intensities
for the excitatory and inhibitory synaptic inputs γE,k(t)
and γI,k(t), respectively. The pooled Poisson processes
associated with the NE excitatory and NI inhibitory syn-
aptic inputs are denoted by SE(t) and SI(t),

SE(t) =
∑

k

SE,k(t), SI(t) =
∑

k

SI,k(t) , (5)

with time-dependent spiking rates λE(t) and λI(t), respec-
tively. These equations implicitly take into account the
pooling property, also called the superposition property,
whereby the statistical properties of the combined pro-
cess are “locally random”, in the sense that it appears
random over periods of time that are small compared
to the individual mean interspike times (Cox and Smith
1954).

Most studies have typically examined the situation in
which the inputs on each synapse are in phase. These
methods are also applicable when the individual synap-
tic inputs have the same frequency of oscillation but a
non-zero phase relationship. This occurs naturally, e.g.
in various nuclei of the auditory pathway due to the
traveling-wave of the basilar membrane and the tono-
topic organization of the auditory nerve, resulting in the
convergence of synaptic inputs with varying phase rela-
tionships (Kuhlmann et al. 2002).
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In the case of conductance synapses, the synaptic cur-
rent is described by (Tuckwell 1979, 1988b)

Is(t) = Cm [VE − v(t)]
NE∑
k=1

gE,k SE,k(t)

+ Cm [VI − v(t)]
NI∑

k=1

gI,k SI,k(t) , (6)

where the potentials VE and VI are the (constant) rever-
sal potentials (VI ≤ Vreset < Vth < VE). The reversal
potentials, which introduce a nonlinearity into the sum-
mation of the individual synaptic inputs, arise from the
equilibrium potentials of the ion channels. They are so
named because the direction of associated current flow
reverses when the membrane potential passes through
the corresponding reversal potential. The parameters
gE,k, gI,k > 0 represent the integrated inhibitory and
excitatory conductances over the time course of the syn-
aptic event divided by the neural capacitance and are
thus dimensionless (they are non-negative and for con-
venience are taken here to be identical for all excitatory
and inhibitory inputs respectively, so that the subscripts
k in the above equation are subsequently dropped).

3 Stochastic models

As for the case with homogeneous synaptic input, the
above mentioned pooling property Eq. 5 of indepen-
dent renewal processes provides an excellent descrip-
tion of the combined input of inhomogeneous input to
a large number of synapses. The Ornstein–Uhlenbeck
model (Uhlenbeck and Ornstein 1930) provides a good
description of inhomogeneous stochastic synaptic input
(Tuckwell 1989),

τ
dv(t)

dt
= −[v(t) − V0] + µ(t) + σ(t)

√
2τ ξ(t) , (7)

where ξ(t) is Gaussian white noise, and the drift µ(t)
and variance σ(t) of the input can both have a depen-
dence upon time. For a description of the derivation of
the this equation and the range over which it is accurate,
see Burkitt (2006). For simplicity, it will be assumed
throughout that the membrane potential at the initial
time t0 is at the resting potential V0 and that this is also
the reset potential: v(t0) ≡ v0 = V0 = Vreset.

The time-dependent first and second moments, µ(t; v0)

and σ 2(t; v0), of the free or unrestricted membrane po-
tential (i.e., neglecting the spiking threshold) are defined
by

µ(t; v0) ≡ E[v(t)|v0, t0 = 0] (8)

σ 2(t; v0) ≡ Var[v(t)|v0, t0 = 0] .

Their evaluation requires the expectation value of a
Poisson process S(t) with intensity λ(t) over the time
interval �t, and is given by

E [S(t + �t)] = E
[
S2(t + �t)

]
= λ(t)�t + o(�t) . (9)

An exposition of the properties of inhomogeneous Pois-
son processes is given in (Kempter et al. 1998, App. A).

Different neuron models have been considered,
depending upon such issues as whether the periodic
component is endogenous (i.e., the periodic input is
reset to the same initial phase after each spike) or exoge-
neous (i.e., without reset of the periodic input) (Lánský
1997), and whether the noise term is constant or contains
a periodic component (Hohn and Burkitt 2001; Lind-
ner and Schimansky-Geier 2001). The case of endoge-
nous input is mathematically simpler to deal with, since
it allows a straightforward application of the renewal
theory (Bulsara et al. 1996; Plesser and Tanaka 1997;
Shimokawa et al. 1999b; Plesser and Geisel 1999), but
such a phase resetting is unrealistic for biological neural
systems (apart from some special cases involving sen-
sory systems) and will not be considered further here
(for a review, see (Plesser and Geisel 2001)).

Consider the Ornstein–Uhlenbeck process, Eq. 7, with
input µ(t) that is a periodic function with frequency ω

given by

µ(t) = µ0 + µ1 cos(ω t + φ0) , (10)

where φ0 is the phase of the input from which the syn-
aptic integration commences. In the absence of noise
(σ = 0), spikes will only be generated if

v∞ = lim
t→∞ v(t)

= V0 + τm

(
µ0 + µ1√

1 + ω2 τ 2
m

)
> Vth , (11)

where the t → ∞ limit is taken over the local maxima of
v(t). Inputs for which v∞ ≤ Vth are called
sub-threshold or otherwise are called supra-threshold
(although strictly speaking they are only sub-threshold
in the noiseless limit).

The correspondence between the Ornstein–Uhlen-
beck diffusion equation and the discontinuous Stein
model, defined by Eqs. 1 and 3, with periodic synaptic
input proceeds in the same way as the case with homo-
geneous Poisson synaptic input (Burkitt 2006). The drift
and diffusion coefficients µ(t) and σ(t) of the Ornstein–
Uhlenbeck diffusion equation are identified as the first
and second moments of the free membrane potential in
the large time limit (Lánský 1997), since in the diffusion
limit the higher moments vanish. In the case of current
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synapses, the conditional mean and variance of the free
membrane potential, Eq. 8, are given by

µ(t; v0) = v0 e−t/τm +
∫ t

0
dt′ e(t′−t)/τm

×

 NE∑

k=1

aE,k γE,k(t) −
NI∑

k=1

aI,k γI,k(t)


 , (12)

and

σ 2(t; v0) =
∫ t

0
dt′ e2(t′−t)/τm

×

 NE∑

k=1

a2
E,k γE,k(t) +

NI∑
k=1

a2
I,k γI,k(t)


 . (13)

An alternative formulation uses the Gaussian approxi-
mation, which proceeds by considering the evolution of
the free membrane potential (Burkitt and Clark 2001).
The conditional probability density of the free mem-
brane potential p(v, t | v0, t0), which is the probability
that it has the value v at time t given that it had the value
v0 at some earlier time t0, is parameterized as (Burkitt
and Clark 2000)

p(v, t | v0, 0)

= 1√
2 π σ 2(t; v0)

exp

{
−[v − µ(t; v0)]2

2 σ 2(t; v0)

}
. (14)

This approach allows µ(t; v0) and σ 2(t; v0) to be evalu-
ated using a self-consistent formalism, which yields the
expressions in Eqs. 12 and 13. The conditional depen-
dence of p(v, t|v0, t0) upon the periodicity, ω, and the
initial phase, φ, has been suppressed in order to avoid
making the notation cumbersome.

In order to model biologically realistic neurons with
a large number of small amplitude synaptic inputs with
current-based synapses, each with (roughly) the same
amplitude, the following distribution of current synapses
is considered (Lánský 1997). The NE excitatory synapses
are partitioned into a set of NB background synapses
and a smaller set of NF foreground synapses, with NE =
NB +NF, NB ∼ NI, and NF ∼ √

NB (Note: this relation-
ship between the number of foreground and background
synapses ensures the existence of the Ornstein–Uhlen-
beck limit of the jump process in the diffusion limit).
The synaptic inputs, membrane potential, and spike out-
puts are illustrated in Fig. 1 for an integrate-and-fire
neuron with current synapses receiving both foreground
periodic and background stationary synaptic input. The
figure shows that both the membrane potential and its
variance have a periodic component arising from the
foreground synaptic input. The inhibitory synapses and
the background excitatory synapses correspond to the

output

Var[v(t)]

V
0

v(t)
V

th

input

λ(t)

time

Fig. 1 Illustration of the integrate-and-fire neuron with cur-
rent synapses receiving inhomogeneous input. The synaptic in-
put consists of background input that is both excitatory (above
the time axis) and inhibitory (below), as well as foreground peri-
odic excitatory input, with inhomogeneous Poisson rate λ(t). The
membrane potential, v(t), is plotted, showing the output spikes
generated (top plot) when the potential reaches threshold, Vth,
and the subsequent reset, Vr = V0. Also plotted is the theoretical
value for the variance of the membrane potential – the lower line is
the contribution arising from the background synaptic inputs (no
periodicity) and the upper line is the total variance (that includes
the foreground periodic component)

spontaneous activity and their spiking-rates are taken to
be homogeneous Poisson processes whose average con-
tributions cancel each other. Consequently they do not
contribute to the drift µ(t; v0) in Eq. 12, but their contri-
butions summate in the diffusion term σ(t; v0) in Eq. 13.
The remaining foreground synapses are responsible for
the drift, µ(t), as well as contributing to the diffusion
term, σ(t), of the Ornstein–Uhlenbeck process.

3.1 The spiking rate and interspike interval distribution

The first passage time problem for the membrane poten-
tial has a conditional probability distribution, fθ (t; ω, φ),
that depends upon both the frequency, ω, of the input
and its phase, φ, at the beginning of the interspike inter-
val (Plesser and Geisel 1999). This conditional first pas-
sage time density obeys the renewal equation (Plesser
and Tanaka 1997; Burkitt and Clark 1999)

p(Vth, t | v0, t0) =
∫ t

t0
dt′ fθ (t′; ω, φ) p(Vth, t | Vth, t′). (15)

This formulation of the first passage time problem, due
to Schrödinger (1915), involves splitting the trajectory
of the freely evolving membrane potential into two sec-
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Fig. 2 Illustrative plot of the conditional first passage time dis-
tribution fθ (t′; ω, φ0) (upper plot) and the input spiking-rate λE(t)
(lower plot). The vertical dashed lines indicate multiples of the
period of the input. The initial phase is φ0 = 0, and the small
symbols indicate the contributions that sum in Fig. 3 at the succes-
sive phases of the input φ′ = π/2. (Taken from Burkitt and van
Hemmen 2003)

tions as described in relation to homogeneous synaptic
input in (Burkitt 2006, Sect. 4). In the situation here with
inhomogeneous synaptic input, both the conditional first
passage time density, fθ (t′; ω, φ), and the conditional
probability density, p(v, t|v0, t0), have a dependence upon
the periodicity, ω, and the initial phase, φ, of the periodic
input. There are few results that can be derived com-
pletely analytically for this case with arbitrarily large
amplitude of the periodic foreground synaptic input,
apart from those discussed in the following section for
the perfect integrator (a perturbative approach using the
Fokker–Planck formalism for small amplitude periodic
input is outlined in Sect. 3.2). Most results
require the first passage time to be evaluated numer-
ically from the renewal equation, which is a Volterra
integral equation (Plesser and Tanaka 1997; Burkitt and
Clark 2001). An illustrative plot of the resulting condi-
tional first passage time distribution is shown in Fig. 2
together with the input spiking rate, λE(t) (in this exam-
ple there is no inhibition, and hence no background
neural activity).

The interspike interval distribution, ρ(t; ω), that is
generated by the inhomogeneous Poisson inputs is eval-
uated by taking the appropriate average over the initial
phases, φ0, of the conditional first passage time density

ρ(t; ω) =
∫ 2π

0

dφ0

2π
fθ (t; ω, φ0) χ(s)(φ0) , (16)

φ

G
φ,

φ 0

0 0.5π 1.5π 2ππ

Fig. 3 Illustrative plot of one column (solid line) of the phase tran-
sition density matrix Gφ,φ0 resulting from the first passage time
density in Fig. 2 with φ0 = 0. The contributions from each individ-
ual period (dashed lines) are summed to give the total (solid line).
The symbols correspond to the contributions at phase φ = π/2,
as illustrated in Fig. 2, and sum to give the value described by the
open circle. (Taken from Burkitt and van Hemmen 2003)

where χ(s)(φ) is the stationary distribution of phases,
evaluated as follows. A phase transition density may be
defined by

G(φ, φ0) :=
∫ ∞

0
dt′ fθ (t′; ω, φ0) δ([ωt′ + φ0] mod 2π − φ) ,

(17)

which gives the probability density for output spikes
with phase φ when the initial phase is φ0. This is illus-
trated in Fig. 3, which shows one column of the matrix,
Gφ,φ0 , (obtained from the transition matrix by discret-
izing the phase) namely, for φ0 = 0, constructed using
the first passage time density of Fig. 2. The small sym-
bols in this plot show the contributions from φ = π/2,
which arise from the summation of successive periods,
as illustrated by the corresponding symbols in Fig. 2.

This provides a spike phase representation of succes-
sive output spikes. The phase of the (n + 1)th spike is
given by

χ(n+1)(φ′) =
∫ 2π

0

dφ

2π
G(φ′, φ) χ(n)(φ) , (18)

where χ(n)(φ) to be the output spike phase density for
the nth spike. This expression is essentially a recur-
rence relation between spike phases that describes the
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successive phases of the spike times in terms of a Markov
process. Consequently, the stationary spike phase den-
sity, χ(s)(φ), is given by the (nontrivial) solution of

χ(s)(φ′) =
∫ 2π

0

dφ

2π
G(φ′, φ) χ(s)(φ) . (19)

The stationary spike phase distribution vector, χ
(s)
φ , (in

matrix notation) is the eigenvector corresponding to the
unique eigenvalue 1 (Plesser and Geisel 1999). Alterna-
tively, the stationary spike phase distribution may be
obtained by iterating the recurrence relation Eq. 18 to
its stable fixed-point (Shimokawa et al. 1999b).

The average output spiking rate, νout, is determined
from the average interspike interval of the output spikes

νout =
[

τr +
∫ ∞

0
dt t ρ(t; ω)

]−1

=
[
τr +

∫ ∞

0
dt

∫ 2π

0

dφ0

2π
t fθ (t; ω, φ0) χ(s)(φ0)

]−1

. (20)

Consequently, the time or ensemble averaged output
spiking rate may be described as an inhomogeneous
Poisson process with a periodic spiking rate given by
the product of two terms,

λout(t) = νout χ(s)(φ) , (21)

where λout(t) is a periodic function with period 2π/ω

and φ = [ωt] mod 2π . Consequently, νout gives the phase-
averaged rate and χ(s)(φ) gives the phase dependence
of the output spike distribution.

The degree of phase locking (or synchronization) of
the neural response to periodic synaptic input is mea-
sured by the vector strength r (Goldberg and Brown
1969), also known as the synchronization index
(Anderson 1973; Johnson 1980),

r =
(

r2
S + r2

C

)1/2

rS =
∫ 2π

0
dφ χ(s)(φ) sin φ (22)

rC =
∫ 2π

0
dφ χ(s)(φ) cos φ .

This has been examined in the leaky integrate-and-fire
neuron model with current synapses using a combina-
tion of both numerical simulations and analytical tech-
niques (Kempter et al. 1998; Burkitt and Clark 2001).The

application of this formalism to particular models,
namely both the perfect integrator and the leaky
integrate-and-fire neuron, now follows.

3.1.1 The perfect integrator neuron model:

The solution for the perfect integrator neuron model
with excitatory synaptic input described by an inhomo-
geneous Poisson process is derived from the solution for
the homogeneous case, reviewed in (Burkitt 2006, Sect.
4.1). It follows by noting that an inhomogeneous Poisson
process with a time-dependent spiking rate, λE(t), can
be converted to a standard temporally homogeneous
Poisson process by the change in time scale (Tuckwell
1989)

t̂ =
∫ t

0
λE(t′) dt′ ≡ �(t) . (23)

This transformation explicitly gives the conditional out-
put spike density at time t

fθ (t; ω, φ0)=λE(t) f̂θ (�(t))

= θ λE(t)√
2π a2

E �3(t)
exp

{
− (θ−aE �(t))2

2 a2
E �(t)

}
, (24)

where θ = Vth − Vreset. This expression is valid for
any inhomogeneous Poisson process with spiking rate
λE(t) > 0, taken here to be periodic with frequency,
ω, and initial phase, φ0. It is straightforward to extend
this result to include inhibitory synaptic inputs, so long
as the inhibition has the same spiking-rate function,
λI(t) = λE(t), by the substitution of a2

E → (a2
E + a2

I )

in both denominators and aE → (aE − aI) in the numer-
ator of the exponential.

The interspike interval distribution, ρ(t; ω), is
obtained by the appropriate average over the initial
phase using the stationary spike phase density of the
phase transition matrix, as described in Eqs. 16–19. Note
that for the perfect integrator model the synchroniza-
tion index of the output spikes is exactly equal to the
synchronization index of the inputs.

3.1.2 The leaky integrate-and-fire neuron model:

In the case of the leaky integrate-and-fire neuron model
with inhomogeneous Poisson synaptic input and
current synapses, the drift µ(t) and diffusion terms σ(t)
of the Ornstein–Uhlenbeck process have the values
(cf. Eqs. 12, 13), (Lánský and Sato 1999; Burkitt and
Clark 2001)
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µ(t) =
∫ t

0
dt′ e(t′−t)/τm aE λF(t)

σ 2(t) =
∫ t

0
dt′ e2(t′−t)/τm

[
a2

E (λF(t) + λB) + a2
I λI

]
,
(25)

where λF(t), λB are the pooled Poisson spiking rates
of the excitatory foreground and background synapses
respectively, λF(t) is the time-dependent spiking rate of
the excitatory inhomogeneous Poisson synaptic inputs
(i.e., periodic with angular frequency ω: λF(t + 2π/ω) =
λF(t)), and λI is the pooled spiking rate of the inhibi-
tory synaptic inputs, typically taken to be described by a
homogeneous Poisson process (see discussion following
Eq. 14). Note that for inhomogeneous Poisson synaptic
input this gives a time-dependent diffusion coefficient
σ(t) in the Ornstein–Uhlenbeck equation, Eq. 7.

The leaky integrate-and-fire neuron with current syn-
apses has been investigated using the above methods
(Burkitt and Clark 2001; Hohn and Burkitt 2001). In
the situation where there are only excitatory inputs, the
results provide the relationship between the input and
output spiking rates, as well as the input and output
synchronization, as measured by the vector strength,
Eq. 22, (Burkitt and Clark 2001). The model in which
there is an excitatory foreground input with spontaneous
background (excitatory and inhibitory) activity has been
studied in the context of stochastic resonance (Plesser
and Geisel 1999; Hohn and Burkitt 2001) and the results
are discussed in Sect. 4.

An approximation that is frequently used is to take
the diffusion term to be constant (i.e. its average value).
The rationale for this approximation is that the major
contribution to the variance is from the background syn-
apses (since NF ∼ √

NB � NB), and the background in-
put is constant, as illustrated in Fig.1. While this is often
a good approximation, a number of studies have exam-
ined the model with time-dependent diffusion, using
the Gaussian approximation (Burkitt and Clark 2001),
the Ornstein–Uhlenbeck approach (Hohn and Burkitt
2001), and the Fokker–Planck formalism (Lindner and
Schimansky-Geier 2001; Giraudo and Sacerdote 2005),
and found that there are important differences. The
modulation of the diffusion has been shown, for example,
to provide better signal processing capabilities in a study
of stochastic resonance (Hohn and Burkitt 2001), as dis-
cussed in the following section.

The integrate-and-fire neuron model with conduc-
tance synapses for inhomogeneous synaptic inputs can
be analyzed in the Gaussian approximation using the
approach outlined above (Burkitt and van Hemmen
2003). After an output spike is generated, the membrane
potential approaches a (time-dependent) equilibrium
value, µQ(t), about which it fluctuates with variance

σ 2
Q (t). The membrane potential approaches µQ(t)

with an effective membrane time constant, τQ, that is
different from the passive membrane time constant due
to the effect of the synaptic conductances. In the case
of homogeneous δ-function synaptic inputs, the time-
independent values of µQ, σ 2

Q , and τQ are (Hanson and
Tuckwell 1983; Burkitt 2001)

µQ = τQ

(
Vp

τp
+ r11

)

σ 2
Q = µ2

Qr20 − 2µQr21 + r22

2/τQ − r20
(26)

1
τQ

= 1
τp

+ r10 ,

rkl := λI gk
I Vl

I + λE gk
E Vl

E , (27)

where (kl) = {(10), (11), (20), (21), (22)}. The parame-
ter µQ represents the average equilibrium value of the
membrane potential in the absence of spike generation.
It arises naturally from a balance of the net input (i.e.,
sum of the excitatory and inhibitory inputs) and decays
with time (i.e., leakage with time constant τQ).

With inhomogeneous synaptic input the constants, rkl,
become time-dependent functions, rkl(t), defined as

rkl(t) = λI gk
I Vl

I + (λF(t) + λB) gk
E Vl

E , (28)

where λF(t), λB, and λI are as defined following Eq. 25.
The solutions to these equations in the diffusion approx-
imation are (Burkitt and van Hemmen, 2003)

µ(t; v0, φ0)

= e−t/τ
{

v0 +
∫ t

0
dt′

[
Vp

τp
+ r11(t

′)
]

et′/τ
}

σ 2(t; v0, φ0) (29)

= e−2t/τ
∫ t

0
dt′

[
r20(t′) µ2(t′; v0, φ0)

−2r21(t
′) µ(t′; v0, φ0) + r22(t′)

]
e2t′/τ ,

where τ is the effective time constant, τQ. The depen-
dence upon φ0 arises because this is the phase of the
periodic synaptic input, λE(t), at the start of the inte-
gration time. The analysis then proceeds exactly as for
current synapses.

3.2 Fokker–planck formalism

An alternative formalism is the Fokker–Planck equa-
tion, which describes the time evolution of the prob-
ability density P(v, t) of the membrane potential (van
Kampen 1992; Risken 1996)

∂

∂t
P(v, t) =

[
− ∂

∂v
A(v, t) + 1

2
∂2

∂v2 B(v, t)
]

P(v, t) , (30)
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where A(v, t) is the drift function and B(v, t) is the diffu-
sion function, which are the first two moments of the
distribution of the independent jumps in the membrane
potential due to the stochastic synaptic input. For the
leaky integrate-and-fire neuron model with current syn-
apses, Eq. 7, these functions are given by (Brunel and
Hakim 1999)

A(v, t) = − 1
τ

(v − V0 − µ(t)) , B(v, t) = 2 σ 2(t)
τ

, (31)

where τ = τm and µ(t), σ(t) are given in Eq. 25. The
diffusion term, σ , is typically taken to be constant by
assigning its average value, as discussed in Sect. 3.1.2.
Brunel and colleagues have developed a perturbative
method based upon the Fokker–Planck equation (Brunel
and Hakim 1999; Brunel et al. 2001, 2003; Fourcaud and
Brunel 2002). They consider an oscillating input of the
form

µ(t) = µ {1 + ε r(ω) cos[ωt + �(ω)]} , (32)

where ε is the small parameter of the perturbation expan-
sion, denoting the ratio of the stationary and oscillat-
ing contributions. The drift coefficient µ and diffusion
coefficient σ are related to the foreground and back-
ground spiking rates by

µ = µ̃ τm, µ̃ = aE λF

σ 2 = σ̃ 2 τm, σ̃ 2 = 1
2

[
a2

E
(
λF + λB

) + a2
I λI

]
,

(33)

where λF is the time average of λF(t). The Fokker–Planck
equation can be split into a continuity equation for the
probability density

∂

∂t
P(v, t) = −∂J(v, t)

∂v
, (34)

and a constitutive equation for the probability flux J(v, t)

J(v, t) = A(v, t) P(v, t) − 1
2

∂

∂v
B(v) P(v, t)

= − 1
τ

(v − µ(t)) P(v, t) − σ 2

τ

∂

∂v
P(v, t) , (35)

which gives the probability current through v at time t
(Risken 1996). The instantaneous spiking rate is given
by the flux through the threshold

λout(t) = J(Vth, t) . (36)

The boundary conditions need to be specified; at the
lower boundary the conditions are

lim
v→−∞ P(v, t) = 0, lim

v→−∞ vP(v, t) = 0, (37)

at the threshold, Vth, there is an absorbing boundary
condition

P(Vth, t) = 0,
∂

∂v
P(Vth, t) = −λout(t) τ

σ 2 , (38)

and at the reset potential, Vreset, the flux from the thresh-
old flows in as a result of the reset mechanism

J(V+
reset, t) − J(V−

reset, t) = λout(t − τr) . (39)

The probability distribution also has to satisfy the nor-
malization condition∫ Vth

−∞
dv P(v, t) + pr(t) = 1 , (40)

where pr(t) = ∫ t
t−τr

du λout(u) is the probability of the
neuron being refractory at time t. The strategy is to
solve the Fokker–Planck equation, Eq. 30, with these
boundary conditions to first order in the parameter ε

(using complex input notation for simplicity) (Brunel
2000; Fourcaud and Brunel 2002)

λout(t) = λ0

[
1 + ε n̂0(ω) eiωt + O(ε2)

]

P0(v, t) = P0(v, t) + ε eiωt P̂0(v, ω) + O(ε2) ,
(41)

where n̂0(ω) = r0(ω) exp[i�(ω)] and P̂0(v, ω) are com-
plex quantities describing the oscillatory component with
frequency ω of the instantaneous spiking rate of the syn-
aptic input and the voltage probability density, respec-
tively.

For the perfect integrator with Gaussian white noise
(i.e., δ-function synaptic inputs) the drift and diffusion
functions are given by µ̃ and σ̃ , as defined in Eq. 33. The
expressions for r(ω) and n̂0(ω) are given by (Abbott and
van Vreeswijk 1993; Fourcaud and Brunel 2002)

r(ω) = 1 + √
1 + 2iτeω

2
, n̂0(ω) =

√
1 + 2iτeω − 1

iτeω
,

(42)

where τe = 2σ̃ 2/µ̃2 [see Fourcaud and Brunel (2002) for
the expression for P̂0(v, ω)]. Consequently, the neuron

attenuates inputs at high frequencies by a factor
√

2
τeω

,
with a phase lag that tends to −π

4 . At frequencies lower
than 1

τe
there is little attenuation and only a small phase

lag.
For the leaky integrate-and-fire neuron model with

current synapses and Gaussian white noise, the full
expression for n̂0(ω) has been evaluated (Brunel and
Hakim 1999; Brunel et al. 2001; Lindner and Schimansky-
Geier 2001; Fourcaud and Brunel 2002), and in the high-

frequency limit behaves as n̂0(ω) ∼
√

2
iτeω

, which is the
same behavior as for the perfect integrator. This analysis
using the Fokker–Planck equation and an ε expansion
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for small amplitude modulations of a current synaptic in-
put has been extended to examine the model with finite
synaptic time constants (i.e., colored noise) (Fourcaud
and Brunel 2002). The analysis is carried out using an
expansion in small value of the ratio k = √

τs/τm, where
τs is the synaptic time constant. The results indicate that
the spiking-rate modulation due to an oscillatory input
remains finite in the high-frequency limit with no phase
lag.

The results of these studies in relation to stochastic
resonance are discussed in the following section. A gen-
eral theory for deriving the moments of the first passage
time for the Ornstein–Uhlenbeck process in the pres-
ence of a weak time-dependent drift using a Fokker–
Planck approach has been developed (Lindner 2004).
While most studies involve the use of either a weak
stimulus, thus enabling the use of linear response the-
ory, or weak noise, a recently proposed method that is
based upon discrete state Markovian modeling provides
results that show good agreement over a wide param-
eter range that extends beyond the weak driving limit
(Schindler et al. 2004, 2005).

4 Stochastic resonance

Recent interest in the response of the integrate-and-
fire neuron model to noisy periodic synaptic input has
in part been motivated by the existence of stochastic
resonance in these systems. Stochastic resonance occurs
when the detection of a subthreshold periodic stimulus
is enhanced by the presence of noise (Fauve and Heslot
1983). Although originally proposed as an explanation
for ice-ages (Benzi et al. 1981), it has been found to
play a role in the sensory pathways of various organ-
isms (Douglas et al. 1993; Braun et al. 1994). Stochastic
resonance has been extensively studied by analyzing the
effect of a noisy weak periodic stimulus upon a system
in a double-well potential, which has two stable solu-
tions in the absence of both noise and external forcing.
If the periodic external forcing (signal) is not sufficiently
large to overcome the potential barrier then the system
remains in its initial state. In the presence of noise, the
system may jump between the two states at random
times. Such transitions are found to be correlated with
the (subthreshold) signal and cause a peak in the power
spectrum at the frequency of the signal. A review of sto-
chastic resonance is given in Gammaitoni et al. (1998).

In neural systems stochastic resonance is typically
quantified by the improvement that it causes in measures
of information transmission such as the signal-to-noise
ratio (Chapeau-Blondeau et al. 1996), cross-correlations
(Heneghan et al. 1996), or mutual information between

the input and output (Bulsara and Zador 1996). The
phenomena of stochastic resonance was demonstrated
in neural systems by using external noise applied to cray-
fish mechanoreceptor cells (Douglas et al. 1993), and
this sparked its discovery and examination in numerous
other neural systems (Lindner et al. 2004). Consequently
this generated considerable interest in the analysis of
stochastic resonance in neural models, including the
perfect integrator (Bulsara et al. 1994), the Fitzhugh–
Nagomo model (Longtin 1993; Chialvo et al. 1997), a bi-
stable neuron model (Longtin et al. 1994), and the leaky
integrate-and-fire neuron model (Bulsara et al. 1996;
Stemmler 1996). These studies typically involved both
analytical and numerical investigations of an Ornstein–
Uhlenbeck process with a drift function consisting of
a constant contribution and a much weaker periodic
contribution, and a noise of constant amplitude. How-
ever, much of the early work involved the analysis of
the more mathematically tractable situation in which
the phase of the input stimulus is reset after each output
spike is generated (Plesser and Tanaka 1997), a situation
which is implausible in the neurophysiological context.
The method for solving this shortcoming, which involves
the appropriate phase averaging, is outlined in Sect. 3
(Plesser and Geisel 1999; Shimokawa et al. 1999b).

While most studies of stochastic resonance have
focussed upon the response of single neurons, there
have been a number of studies of neuronal populations
(Shimokawa et al. 1999a; Spiridon and Gerstner 1999;
Lindner and Schimansky-Geier 2001), and these stud-
ies show that the population can reliably transmit fast
periodic signals with a resolution that is better than an
individual neuron. This increase in the temporal resolu-
tion at the population level is largely determined by the
total rate of synaptic input. However, this population
code can be enhanced by strong inhibitory couplings,
which can considerably reduce the noise level in certain
frequency bands and increase the temporal resolution
(Spiridon and Gerstner 1999).

Stochastic resonance has also been studied with syn-
aptic input that generates colored noise in the mem-
brane potential, such as arises with finite synaptic time
constants and temporal correlations in the synaptic input
(Brunel et al. 2001; Fourcaud and Brunel 2002). Colored
noise considerably alters the dynamics and expression
of stochastic resonance in the integrate-and-fire neuron
model. Using a Fokker–Planck formalism, these stud-
ies showed that the amplitude of the modulation of the
spiking rate remains finite even in the large frequency
limit, whereas it vanishes in this limit with instantaneous
synaptic dynamics (i.e., Gaussian white noise synaptic
input). Moreover, the phase lag of the modulated
response is π

4 for instantaneous synaptic dynamics,
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whereas it vanishes for realistic synaptic dynamics.
Colored noise has subsequently also been investigated
in a study of information processing in which the ability
of a neuron to detect transient inputs was examined
(Wenning et al. 2005), and the results likewise indi-
cate that stochastic resonance is enhanced. In order
to take account of the spatial extent of the dendritic
tree a two-compartment leaky integrate-and-fire neuron
model, comprising a dendritic compartment and trig-
ger zone, has been investigated (Rodriguez and Lánský
2000). This study of the phase locking properties of the
model with stochastic sub-threshold periodic stimula-
tion found that stochastic resonance is enhanced, both
in terms of the amplitude of the response and the range
of values of the noise over which it is observed. The
effect of refractory and adaptation have also been exam-
ined (Gedeon and Holzer 2004), and the phase-locking
behavior has been shown to be robust when these effects
are included.

The traditional treatment of the diffusion approach
with the Ornstein–Uhlenbeck process uses a noise com-
ponent that is constant in time. However, in a neu-
ron with a finite number of synapses the variance of
the membrane potential is modulated by the input sig-
nal. The effect of such signal-dependent noise has been
investigated in the leaky integrate-and-fire neuron model
with current synapses and is found to enhance stochastic
resonance and the signal processing capabilities (Hohn
and Burkitt 2001; Lindner and Schimansky-Geier 2001;
Giraudo and Sacerdote 2005). A phenomena related to,
but distinct from, stochastic resonance, namely a sub-
threshold and spiking-rate resonance, has been found
in a generalized leaky integrate-and-fire neural model
(Brunel et al. 2003).

There is considerable ongoing interest in the function
of stochastic resonance in neural systems. One viewpoint
is that stochastic resonance is simply a passive means by
which organisms can extend the sensitivity of their sen-
sory neural mechanisms. However, it is also possible that
stochastic resonance is used actively, i.e., there may be
mechanisms to adjust the amount of noise in the neu-
ral system so that the sensitivity of the neural output is
optimally adjusted (Wenning and Obermayer 2003).

5 Networks of integrate-and-fire neurons

This review has focussed on analytical methods for under-
standing the properties of a single integrate-and-fire
neuron. However, the behavior of such neurons within
a network may have a much richer structure. It is clearly
beyond the scope of this review to provide a comprehen-
sive overview of the diverse literature on the network

behavior of neurons. Nevertheless it is possible
to outline some of the main areas of network behavior
in which the study of integrate-and-fire neurons have
played an important role.

Early studies of the network behavior of integrate-
and-fire neurons (Amit and Tsodyks 1991a,b; Gerst-
ner and van Hemmen 1992) analyzed their behavior
in terms of their suitability as models of associative
memory (Hopfield 1982). In these models, the spatial
patterns of self-sustained spiking through recurrent con-
nections represent stored memories that the neuronal
dynamics retrieves. A number of studies, some of which
used a discrete-time formalism, examined the general
nature of the patterns of spiking behavior that such net-
works produce (van Vreeswijk and Abbott 1993; Usher
et al. 1993; Golomb and Rinzel 1993; Usher et al. 1994).
Using a combination of analytical techniques (such as
the mean-field approach) and computer simulations, they
found that the network behavior is characterized by
stable spiking patterns.

5.1 Synchronization and oscillations within a network

Biological neural systems may exhibit coherent oscil-
lations, such as the theta rhythm of the hippocampus
and the various EEG rhythms of the cortex, and these
have been postulated to play an important role in neu-
ral information processing (Singer 1993). These large
scale oscillations are generally regarded as being due
to the interaction of excitatory and inhibitory neurons,
and detailed neuronal models have been constructed
for both the theta rhythm (Tsodyks et al. 1996) and the
EEG signal (Rennie et al. 2002). The global synchroni-
zation of coupled oscillators (Winfree 1967) was solved
analytically by Kuramoto, who showed that global syn-
chronization occurs in the limit of a large number of
identical oscillators with small couplings and subject to
small noise (Kuramoto 1984, 1991) [for a review see
(Strogatz 2000)]. These results were extended to inte-
grate-and-fire neurons in the case of identical neurons,
where it was shown that perfect synchronization occurs
(i.e., zero phase differences) in a finite time (Mirollo and
Strogatz 1990).

Gerstner and co-workers provided a general unified
theory of phase-locking in a globally coupled network
of integrate-and-fire neurons, incorporating transmis-
sion delays and using the spike-response model. The
dynamics was solved exactly in the limit of a large num-
ber of units (Gerstner and van Hemmen 1993; Ritz
et al. 1994; Gerstner 1995). Their results established
that for a spatially homogeneous network of neurons to
exhibit coherent oscillations that are asymptotically
stable, the postsynaptic potential must increase in time
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as the neurons fire. Conversely, if the postsynaptic
potential is decreasing, then the oscillations are unsta-
ble (Gerstner et al. 1996b). The reliability with which a
population of spiking neurons can transmit a continu-
ous-time signal was investigated by examining the noise
spectrum using both analytical methods and numerical
simulations (Spiridon and Gerstner 1999). The time evo-
lution of a population of integrate-and-fire neurons was
analyzed using an integral equation approach, similar to
that of earlier studies (Knight 1972a; Wilson and Cowan
1972), that is valid for both weak and strong coupling.
In the low-noise regime, it was found that transitions
between the asynchronous and the synchronized state
occur almost immediately, which indicates that a pop-
ulation of neurons can transmit information fast and
reliably (Gerstner 2000). The oscillation frequency of a
randomly connected network of integrate-and-fire neu-
rons with realistic synaptic dynamics has been derived
(Brunel and Wang 2003).

The results on the synchronization of network activity
by Mirollo and Strogatz (1990) can be extended to take
into account such effects as synaptic filtering (Hansel
et al. 1995), axonal transmission delays (Ernst et al.
1995), and different intrinsic frequencies and thresholds
of the neurons, as well as varying the couplings (but
so long as they remain positive) (Senn and Urbanczik
2000). A network of noisy integrate-and-fire neurons
has recently been studied using numerical simulations
of the Fokker–Planck equation, where a propagating
pulse state appears (Sakaguchi 2004).

Another method employed to investigate the behav-
ior of a network of neurons is the population density
approach, originally proposed for the study of non-inter-
acting populations of neurons (Knight 1972a,b), and
recently extended to the study of interacting linear inte-
grate-and-fire neurons (Fusi and Mattia 1999) using a
mean-field approach based upon the Fokker–Planck for-
malism (Nykamp and Trachina 2000; Mattia and Del
Giudice 2002, 2004).

5.2 Traveling pulses of activity within a network

Experimental studies in slices of neural tissue have ob-
served the propagation of synaptically generated waves
of activity [see Bressloff (1999) and references therein].
Models of the propagation of this activity in networks
of coupled integrate-and-fire neurons have been devel-
oped and the velocity of the waves as a function of
the parameters of the model analyzed (Bressloff and
Coombes 1998; Ermentrout 1998; Kistler and van Hem-
men 1998; Golomb and Ermentrout 1999). A stability
analysis of these waves in a spatially distributed network
of integrate-and-fire neurons has shown that the fast

wave, even with small axonal delays, are stable, whereas
the slow waves are unstable as a result of a Hopf bifur-
cation in the firing times (Bressloff 1999). A dynamical
theory of this behavior in networks of integrate-and-fire
neurons has been developed, which allows the study of
the stability of phase-locked solutions in both the weak
and strong coupling regimes (Bressloff and Coombes
2000; Bressloff 2000). The results obtained using the
integrate-and-fire neuron model and using rate-based
models have been shown to be closely related (Cremers
and Herz 2002).

5.3 Recurrently connected networks

In order to understand the properties of a network of
randomly interconnected excitatory and inhibitory neu-
rons, Amit and Brunel (1997a,b) developed a self-con-
sistent analysis to determine the spiking rates in the
stationary states of the network dynamics. Subsequent
work, using a self-consistent analysis of a sparsely con-
nected inhibitory network of integrate-and-fire neurons
based upon the Fokker–Planck formalism and a linear
stability analysis of the stationary states, found a Hopf
bifurcation line that separated regions with stationary
and oscillatory global activity, where the neurons are
weakly synchronized (Brunel and Hakim 1999). The
oscillatory regime corresponds to strong inhibitory feed-
back, and the period of the global oscillations is mainly
controlled by the synaptic time constants. The same
methods were used to study a sparsely connected net-
work of excitatory and inhibitory leaky integrate-and-fire
neurons with current synapses (Brunel 2000). This study
found a rich structure of dynamical states of the net-
work, including both synchronous and asynchronous
states as the external input and the ratio of excitation
to inhibition was varied. This study was extended to a
sparsely connected network with conductance synapses
(Meffin et al. 2004), which gave results consistent with
both experimental data and numerical simulations of
a Hodgkin–Huxley model for quantities characterizing
in vivo data (Destexhe and Paré 1999; Destexhe et al.
2001). Recent studies comparing the response of neocor-
tical pyramidal neurons with integrate-and-fire neurons
have likewise concluded that the model provides a good
description of observed responses (Rauch et al. 2003;
Giugliano et al. 2004).

5.4 Layered networks

One of the central questions concerning the behav-
ior of networks of neurons is under what conditions
the stable propagation of spike activity through suc-
cessive layers of neurons is possible. This question has
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been examined in a number of different contexts. The
propagation of pulses of spike activity in a layered net-
work has been examined using the spike-response model
(but with a spiking probability that depends linearly
upon the membrane potential, rather than an integrate-
and-fire mechanism for spiking) to determine the
conditions upon the feed-forward synaptic strengths that
allow a spike packet with constant waveform to propa-
gate (Kistler and Gerstner 2002). A study of the propa-
gation of neural activity through a feed-forward network
of integrate-and-fire neurons with conductance synapses
and in the presence of spontaneous background spiking
activity found that spiking-rate modulations are trans-
mitted linearly through many layers with little distortion
(van Rossum et al. 2002). Consequently such a network
is capable of fast, robust, and accurate computation
with a population code based upon spiking rates (van
Rossum and Renart 2004). However, a subsequent study
found that under realistic cortical conditions the neurons
within a layer tend to synchronize and that a transmis-
sion of a rate code through many layers is highly unlikely
(Litvak et al. 2003). This within-layer synchronization
has also been observed in in vitro studies of propaga-
tion through multi-layered systems (Reyes 2003). There
is clearly much to be understood about the properties
of layered networks of neurons, which may require the
development of new analytical techniques.

5.5 Learning with the integrate-and-fire neuron model

The traditional learning paradigm in biological neu-
ral systems is Hebbian rate-based learning, in which
the synaptic modification is based upon correlations
between input and output rates. Such models have been
widely used to understand neural information process-
ing, including models of memory (associative and work-
ing memory), sensory perception, motor control, and
classical conditioning. One such model is the Hopfield
model of associative memory (Hopfield 1982), which has
been subsequently considerably elaborated as a model
of working memory (Compte et al. 2000; Amit and
Mongillo 2003; Mongillo and Amit 2003; Giudice et al.
2003; Mongillo and Amit 2005). In these models there is
an interplay between the dynamics of the neurons (on
a faster time scale) and the dynamics of the synaptic
weights (on a slower time scale). The models contain a
background state that is spontaneously active and that
represents a global attractor of the neuronal dynam-
ics, as well as a set of attractor states of the neuro-
nal dynamics, corresponding to specific memories. This
learning paradigm requires that these input-selective
attractor states of the network dynamics (the “mem-
ories”) are generated by the learning dynamics of the

weights. There has been considerable interest in such
models to incorporate as much biological detail as pos-
sible, including the use of the spiking rate that results
from the analysis of the integrate-and-fire neuron model
(Amit and Tsodyks 1991a,b; Amit and Brunel 1997a,b).
Likewise, it is possible to use the spiking rate of the inte-
grate-and-fire neuron model in studies of artificial neu-
ral systems using supervised learning algorithms (Feng
et al. 2003).

There is considerable experimental evidence that syn-
aptic modification can depend upon the correlations in
timing of the pre- and postsynaptic spikes [for a review
of the experimental evidence see Bi and Poo (2001)].
The study of spike timing dependent plasticity (STDP),
originally introduced in the context of sound localization
in auditory processing (Gerstner et al. 1996a), requires
an explicit neuron model for the relationship between
synaptic input and spike output. Many of the advances
have been made using the linear Poisson neuron model
(Gerstner et al. 1996a; Kempter et al. 1999a), in which
the probability of spike generation is described by an
inhomogeneous Poisson process (van Hemmen 2001).
However, the same methods used in some of these STDP
analyzes of Poisson neurons have also been applied to
the leaky integrate-and-fire neuron (van Rossum et al.
2000; Burkitt and van Hemmen 2003; Burkitt et al.
2004).

5.6 Numerical studies of integrate-and-fire neurons

Although this review focusses on analytical techniques
for the integrate-and-fire neuron model, numerical sim-
ulations have also played an important role in their
study, amongst the earliest of which is Segundo (1968).
The numerical method of Hansel (1998), which consists
of second-order Runge–Kutta time-stepping, a linear
interpolation to accurately determine the spike times,
and then using the spike times to recalibrate the post-
spike potential, has been shown to be second-order
in the time step size, but can be modified to obtain
fourth-order accuracy (Shelley and Tao 2001). A par-
ticularly efficient way to simulate a large-scale recur-
rently connected network of neurons is to update the
variables only when a synaptic input arrives. Such an
event-driven simulation procedure explicitly uses the
deterministic evolution of the membrane potential
between successive inputs (Mattia and Del Giudice 2000).
Population density methods provide an efficient alter-
native for the simulation of network dynamics (Knight
et al. 1996, 2000; Omurtag et al. 2000; Nykamp and
Trachina 2000; Knight 2000; Haskell et al. 2001. Sim-
ulations of the Ornstein–Uhlenbeck equation, Eq. 7,
have also played an important role in understanding
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the integrate-and-fire neuron model. Tuckwell and
Lánský (1997) examine and compare simulations of this
stochastic differential equation using the weak Euler
scheme and normal pseudorandom numbers with the
strong Euler scheme with Bernoulli pseudorandom
numbers.

6 Conclusions

Because the integrate-and-fire neuron model is suffi-
ciently simple to allow mathematical analysis, it is likely
to play an important future role in understanding a
number of mechanisms in neural information process-
ing. This review has highlighted the role the model has
played in understanding the response properties of neu-
rons to inhomogeneous Poisson inputs and the behav-
ior of multi-layered networks of neurons with recurrent
connections. As is clearly apparent from this review,
both of these areas still have a number of important
open questions that can be addressed with this neuron
model.

Another aspect of neural processing for which the
analysis of integrate-and-fire neuron models may
become more important is the analysis of temporal
responses. To date, the analysis of temporal properties
has largely been limited to synchronization (Maršálek
et al. 1997; Burkitt and Clark 1999; Diesmann et al.
1999), coincidence detection (Abeles 1982; König et al.
1996; Joris et al. 1998; Kempter et al. 1999b), onset prop-
erties (Smith 1996; van Rossum 2001; Tiesinga and Se-
jnowski 2001), phase locking (Burkitt and Clark 2001;
Tiesinga 2002), and the response to periodic stimuli
(such as occurs in relation to phase locking to sensory
stimuli (Cariani 1995) and in stochastic resonance, as
discussed in Sect. 4 above). However, there are many
other possible types of temporal behavior that may play
a role in neural processing (Theunissen and Miller 1995;
Cariani 2001). These include the study of the non-equi-
librium dynamics of networks (Prete and Coolen 2004),
dynamic attractors of the sort hypothesized to provide a
model of olfactory processing (Laurent 2002), and syn-
fire chains (Abeles 1991; Diesmann et al. 1996; Câteau
and Fukai 2001). It is very possible that the analysis of
integrate-and-fire neuron models may play an important
role in understanding these processes.
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