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Cascade Models: Understanding the response to stimuli
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• Last time we considered the firing rate as a Poisson process
– Clearly, not all neurons exhibit such firing behavior, nor do they exhibit such 

behavior all the time

– In fact, many neurons show variability greater than than predicted by a Poisson 
model

Firing rates of neurons
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Can we characterize 
the firing rate of 
specific neurons 
based on empirical 
data?
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• Again, treat action potentials as a series of n spikes occurring at 
times ti :

• Then the spike sequence can be considered a series of Dirac
functions:

note:

• So, the spike-count rate r for an interval T is given by:

Spike-count rates
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• If the rate changes over time, we can estimate it by looking at 
shorter intervals Δt

• However, for sufficiently short Δt, there will likely be only 1 or 0 
spikes – i.e. only 2 possible firing rates

Time-dependent firing rate
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Time-dependent firing rate

• Alternative: determine the time-dependent firing rate by averaging 
over trials

• If we have only a few trials (or only one), it is still possible to 
estimate the time-dependent firing rate
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• Simple histogram: divide timeline into intervals of time Δt, count spikes, and 
divide by Δt

• Problem: affected by both the size and location of the time bins

Approximating firing rates from a single trial
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• Moving window: using an interval of Δt, count spikes in a moving window as 
it slides along the spike train

Approximating firing rates from a single trial (cont.)
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• This rate can also be written as a linear filter:

Approximating firing rates (cont.)
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Approximating firing rates (cont.)

• Selection of an appropriate kernel (windowing function) w(t)
determines the smoothness of the curve 

If w(t) is a Gaussian:

Then r(t) is a smooth function of time
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Clearly, one could do both (average over trials, using a kernel)
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Example: 

Tovey et al., J Neurophysiol 70: 640-654, 1993

Study of the information 
encoding of primate inferior 
temporal cortex (response to 
faces)

Single neuron response on 
multiple trials

Gaussian kernel, σ=5ms

Of particular use because the 
stimulus was very complex.
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Alternative: identify the stimulus-specific response
• If the stimulus is known, a better understanding of the time-

dependent response to that stimulus can be obtained by looking at 
the time-dependent change in the stimulus leading to a spike

• Many systems adapt to the average level of stimulus intensity, so 
that the just-noticeable difference Δs between two stimuli is a 
function of stimulus intensity s

• We can study the response of the system to fluctuations in the 
average stimulus: i.e. define s(t) so that
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Cascade Models: Understanding the response to stimuli
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Time interval τ

Representing the Stimulus: 
Spike-triggered average

Average over all 
n spikes in a trial

Then, average 
over trials:
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Spike-triggered average

Note direction of the time access, 
reflecting the average over past stimuli
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Spike-triggered average: example

Chichilnisky et al., Nature Neuroscience 2, 889 - 893 (1999) 

Macaque ganglion cells, response to red, green, and blue stimuli

BY cells

Non-opponent 
ON cells

Non-opponent 
OFF cells



2/21/2007 BME 665 / 565 17

Spike-triggered average (cont.)
• The spike-triggered average can be expressed as an integral:
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rate term?
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Spike triggered average stimulus = Reverse correlation function

• The spike-triggered average is related to the correlation of the firing 
rate and the stimulus:

• If the average firing rate over all trials is 

Then

dttstr
T

Q
T

rs ∫ +=
0

)()(1)( ττ

T
n

r =

)(1)( ττ −= rsQr
C Reverse correlation function

Why negative??



2/21/2007 BME 665 / 565 19

Improving the approximation
• These examples have all estimated the firing rate as an 

instantaneous function

• Neurons respond to inputs over a period of time (a few hundred 
msec) 
– How can we estimate a firing rate that responds to these inputs?
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Cascade Models: Understanding the response to stimuli
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Linear estimation of firing rate
• Given a firing rate r(t) evoked by a stimulus s(t), the (linear) 

estimated firing rate is:

• D(ti) is known as the linear kernel and weights the stimuli at times 
(t – ti)

• We want to choose a kernel D to minimize the squared difference 
between the estimated and actual response:
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Estimation of firing rate (cont.)
• This function is minimized by setting the derivative with respect to D 

to 0

• Solution is a function of 
– the stimulus correlation function

– the stimulus autocorrelation function
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How good is our “optimal” kernel?

Velocity coding in the fly 
visual system:

Stimulus velocity modeled by 
white noise

Dashed line: measured time-
dependent firing rate

Solid line: estimated time-
dependent firing rate
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Cascade Models: Understanding the response to stimuli
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How can we improve our estimate?
• Incorporate static nonlinearities:

– Our current (linear) response is 

– Replace the linear prediction with a nonlinear function of the linear filter 
value

– Allows us to bound the firing rate appropriately, and perhaps model 
nonlinearities of our particular system

– This is often referred to as the gain function or the generator signal of 
the neuronal response
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Directional sensitivity
• Directional tuning in motor cortex of primates

– Data show a tuning curve of
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Example: Motion Anticipation

Berry et al., Nature, 3/25/99, Vol. 398 Issue 6725, p334

Single neuron 
response to 
stimulus
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Example: Motion Anticipation

Berry et al., Nature, 3/25/99, Vol. 398 Issue 6725, p334
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Spatial response to flashing and moving bars

Berry et al., Nature, 3/25/99, Vol. 398 Issue 6725, p334

After a latency of 40ms, neural activity 
increases to a peak at 60ms. Profile is 
centered on location of the flashing bar, and 
has a width at half-maximum that is ~the 
size of the receptive field for these neurons

For a moving bar, the neural activity leads 
the center of the bar by about 100µm.

For a moving bar, the neural activity leads 
the center of the bar by about 100µm.

From these data, can derive the linear 
kernel k(s,t) which defines the response 
rate to our stimulus:
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Contrast sensitivity: “gain” control

Berry et al., Nature, 3/25/99, Vol. 398 Issue 6725, p334

Response is exponentially filtered in 
time (has the effect of averaging it):

High-contrast stimulus desensitizes 
the response model incorporated 
a negative feedback loop known as 
“gain control”:
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Example: Motion Anticipation

Berry et al., Nature, 3/25/99, Vol. 398 Issue 6725, p334

Non-linear filter provides 
a threshold for firing
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White noise analysis

• Choose randomly selected stimuli
• Compute the spike-triggered average (or other estimate of rate) estimate 

the linear filter 
• Fit the mean spike rate as a function of the generator signal estimate the 

nonlinearity
• Compare with actual response data to evaluate the model
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White noise as stimuli
• Clearly, the response depends upon the nature of the stimulus

• A very common technique used for analyzing neuronal response 
patterns is to use a white noise stimulus

• By definition:                                  for a Gaussian (white noise)

(i.e. inputs uncorrelated)

)()( 2 τδστ sssQ =



2/21/2007 BME 665 / 565 35

White noise analysis (cont.)

• So, for white noise stimuli, we can determine our optimal linear kernel:

Since

the optimal kernel for a white noise stimulus is:
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Example: White noise analysis of retinal ON- and OFF-center cells

• Stimuli: 

Chichilnisky, Network: Comput. Neural Syst. 12 (2001) 199–213
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White noise analysis (cont.)
• Calculate the spike-triggered average: 

Chichilnisky, Network: Comput. Neural Syst. 12 (2001) 199–213
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White noise analysis (cont.)
• Estimate the linear filter

– w is the neuron’s stimulus selectivity

– s is the stimulus

– Response of the neuron is estimated as the dot product of the selectivity 
vector w and the stimulus s:

*swswL ⋅=⋅=

Chichilnisky, Network: Comput. Neural Syst. 12 (2001) 199–213
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White noise analysis (cont.)
• Estimate the non-linear function: plot the spike-triggered average as 

a function of L

• Fit an appropriate non-linear function (generator signal/gain)

Chichilnisky, Network: Comput. Neural Syst. 12 (2001) 199–213

ondistributinormalcumulativeCrLCrLF =+≈ )()( 0max β
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White noise analysis (cont.)
• Evaluate the fit

Chichilnisky, Network: Comput. Neural Syst. 12 (2001) 199–213


