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Tuning curves are widely used to characterize the responses of sensory neurons to external stimuli, but there is an
ongoing debate as to their role in sensory processing. Commonly, it is assumed that a neuron’s role is to encode the
stimulus at the tuning curve peak, because high firing rates are the neuron’s most distinct responses. In contrast, many
theoretical and empirical studies have noted that nearby stimuli are most easily discriminated in high-slope regions of
the tuning curve. Here, we demonstrate that both intuitions are correct, but that their relative importance depends on
the experimental context and the level of variability in the neuronal response. Using three different information-based
measures of encoding applied to experimentally measured sensory neurons, we show how the best-encoded stimulus
can transition from high-slope to high-firing-rate regions of the tuning curve with increasing noise level. We further
show that our results are consistent with recent experimental findings that correlate neuronal sensitivities with
perception and behavior. This study illustrates the importance of the noise level in determining the encoding
properties of sensory neurons and provides a unified framework for interpreting how the tuning curve and neuronal
variability relate to the overall role of the neuron in sensory encoding.
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Introduction

Since the earliest studies of sensory systems [1], the
contribution of individual neurons to sensory function has
been assessed by measuring their responses to a relevant set
of stimuli. The standard tool in performing this character-
ization is the neuronal tuning curve: a plot of the average
firing rate of the neuron as a function of relevant stimulus
parameters. Tuning curves have provided the first-order
description of virtually every sensory system, from orienta-
tion columns in the vertebrate visual cortex, to place cells in
the hippocampus and wind-detecting neurons in the cricket
cercal system [2]. Despite their ubiquitous application and
straightforward formulation, the interpretation of tuning
curves remains an issue of debate.

The most common interpretation of tuning curves is that
the stimuli at their peak, which evoke the highest firing rates,
are most important to a neuron. For example, orientation
columns in the visual cortex are typically labeled by the
orientation that evokes the most activity at each location,
effectively identifying each neuron with a single stimulus at
its tuning curve peak. Such a reduction has strong intuitive
appeal because high firing rates are most distinguishable
from background firing and other noise in the system.

In contrast, many studies have noted that nearby stimuli
are most easily discriminated in high-slope regions of the
tuning curve, because in these regions, small changes in the
stimulus result in the largest changes in firing rate [2,3]. From
this perspective, the peak of the tuning curve is a particularly
insensitive region of the neuron’s response because the slope
at the peak is zero.

Here we show that both interpretations can be correct,
depending on the amount of neuronal variability and the
experimental context. Low levels of neuronal variability favor
sensitive or ‘‘fine’’ discrimination of nearby stimuli in regions
of high slope. However, when response variability increases,

fine discrimination becomes disrupted and responses can
only be reliably distinguished on a ‘‘coarser’’ scale. In this
case, high-firing-rate responses stand out, making stimuli at
the peak of the tuning curve most distinguishable. We
demonstrate this intuition by applying three different
information-based measures of stimulus encoding to exper-
imental characterizations of sensory neurons, and demon-
strate a transition from ‘‘high-slope’’ to ‘‘peak-firing-rate’’
encoding as neuronal variability increases, both for single
neurons and in the context of a small population.
These measures also can be applied to experiments that

probe how individual neurons contribute to perception in
different experimental contexts. We consider recent experi-
ments correlating neuronal activity the medial temporal
cortex (area MT) to performance during two-alternative
discrimination tasks [4,5], and show how the different tasks
used in these studies either isolate the effects of ‘‘high-slope’’
encoding [5] or ‘‘peak-firing-rate’’ encoding [4]. Thus, we
provide a consistent framework for interpreting previous
experimental and theoretical results, and demonstrate the
importance of considering neuronal variability in determin-
ing the role of neurons in sensory processing.
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Results

Defining the Information Associated with Particular Stimuli
To illustrate the effect of noise on the encoding of stimuli,

consider the canonical example of a sensory neuron charac-
terized by a bell-shaped tuning curve function f(h), represent-
ing the average firing rate of the neuron as a function of a
stimulus parameter h (Figure 1A, thick line). Across multiple
presentations of the same stimulus, the neuron will have a
distribution of responses sampled from p(rjh): the probability
of r given stimulus h. The width of this distribution represents
the neuronal variability (Figure 1A, error bars and lines).
Neuronal variability can be due to factors such as intrinsic
noise, integration time of the neural response, and aspects of
the stimulus not represented by the parameter h (see Materials
and Methods and Protocol S1).

How can variability affect how well a stimulus is encoded by
a neuron? Intuitively, a stimulus is well encoded if it evokes
unambiguous responses [6]. An unambiguous response is one
that could only be evoked by a small number of stimuli so that
the stimulus is readily identified when this response appears.
For example, a modest firing rate might unambiguously
represent a particular stimulus when there is no background

activity, but will become more ambiguous as background
activity increases.
This intuition can be formalized by the specific informa-

tion of a response [7]:

ispðrÞ ¼ H½H� �H½Hjr� ð1Þ

defined as the difference between the entropy of the stimulus
ensemble H½H� ¼ �

P
h pðhÞ log2pðhÞ and that of the stimulus

distribution conditional on a particular measurement
H½Hjr� ¼ �

P
h pðhjrÞ log2pðhjrÞ. Since the entropy of a stim-

ulus distribution is a measure of how uncertain the stimulus
is, the specific information isp(r) gives the reduction in
uncertainty about the stimulus gained by a particular
response r, and thus is high for unambiguous responses and
low for ambiguous responses.
Well encoded stimuli can thus be identified by their

association with unambiguous responses as defined by isp(r).
We therefore use the stimulus-specific information (SSI) [6] as
our measure of stimulus encoding:

iSSI ðhÞ ¼
X

r

pðrjhÞ ispðrÞ: ð2Þ

The SSI is the average specific information of the responses
that occur when a particular stimulus h is present.
The results described below using the SSI are calculated

numerically for a given tuning curve and model of variability
(see Materials and Methods). Although we focus on the SSI
metric because of its straightforward interpretation in terms
of the relationship between stimulus and response in
encoding, the results described below are also obtained with
other information-based metrics, as demonstrated in Proto-
col S2.

Transition in the Best-Encoded Stimulus from High-Slope
to High-Firing Rates for a Single Neuron
We first compute the SSI for a neuron with a typical bell-

shaped tuning curve, as shown in the example of Figure 1A. In
the case of low noise (Figure 1B), where the firing rate
variability is a small fraction of the mean firing rate, we find
that the maximum SSI does not occur at the peak of the
tuning curve h0¼ 0. Rather, the best-encoded stimuli occur at
6378 (Figure 1B, dashed lines), close to the maximum slope of
the tuning curve.
This result suggests that the regions of high slope are the

most significant to the neuron. However, two points are of
note: (1) the highest SSI is close to, but not directly at, the
point of maximum slope, and (2) there is a smaller peak in the
SSI at the tuning curve peak h0 where the slope of the tuning
curve is zero.
To gain a better understanding of this result, the specific

information associated with the underlying neural responses
(isp(r), Equation 1) is shown in Figure 1C. The specific
information is largest for responses triggered by relatively
few stimuli. Since the number of stimuli associated with a
given response scales with the reciprocal of the tuning curve
slope, responses in high-slope regions of the tuning curve will
typically have higher specific information, resulting in the
broad peak in specific information for intermediate firing
rates (Figure 1C).
However, consideration of the slope alone does not

determine the specific information. In fact, the specific
information is largest for firing rates greater than one (where

Figure 1. Illustration of Slope-to-Peak Transition in the SSI with

Increasing Level of Neuronal Variability

(A) Typical tuning curve of a neuron, with mean firing rate (thick line) and
standard deviation (thin lines) shown as a function of the stimulus
parameter h. These are reproduced as thin lines for reference in (B) and
(D). In this example, the standard deviation of the firing rate for a given
value of h increases with increasing firing rate from a baseline value,
although the particular form of noise chosen does not qualitatively affect
our results. (B and D) The SSI(h) is maximum in regions of high slope in
the low-noise case (B), and maximum at the tuning curve peak in the
high-noise case (D). (C and E) The specific information (solid line) in the
low- and high-noise cases shown as a function of normalized firing rate.
p(rjh) is shown for reference at hS (left) and h0 ¼ 0 (right).
DOI: 10.1371/journal.pbio.0040092.g001
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one corresponds to the maximal firing rate in the absence of
noise [Figure 1A]). Such rates have the largest specific
information because very few stimuli are associated with
them, since the only way these can occur is when noise
increases an already high firing rate. At the same time, the
least specific information is associated with low firing rates.
This reflects that low firing rates may be ‘‘background firing,’’
since they can be generated by any stimulus in the flat ‘‘non-
tuned’’ portion of the tuning curve. Thus, low firing rates
correspond to a wide range of possible stimuli and,
correspondingly, to low specific information. This occurs
despite the fact that the low-firing-rate regions of the tuning
curve also have the smallest firing-rate variability.

The SSI represents an average of the specific information
over the responses associated with a given stimulus p(rjh)
(Equation 2): two examples of these distributions are shown
in Figure 1C (dashed lines) for the angle of maximum SSI
(left) and the peak of the tuning curve (right). In this way,
both the large values of the SSI in the high-slope regions of
the tuning curve and the local maximum of the SSI at h0¼ 0
can be understood (Figure 1B).

Figure 1D shows the SSI for a neuron with the same tuning
curve as in the example of Figure 1B but with 43 the noise
level. The stimulus with the highest SSI in this case occurs at
the peak of the tuning curve h0 ¼ 0, which can again be
understood by considering the underlying specific informa-
tion of responses (Figure 1E).

The specific information has changed in two important
ways as a result of noise. First, background firing (from non-
tuned stimuli) has a farther-reaching effect on low firing
rates. More crucially, high firing rates now have the largest
specific information due to their relative lack of sensitivity to
noise. Whereas an intermediate firing rate can be evoked by
stimuli with lower average firing rates (that noise can raise) or
stimuli with larger average firing rates (that noise can lower),
very high firing rates (at or above the peak average firing rate)
can only result from lower firing rates that noise has raised.
Furthermore, as noise increases, more firing rates above one
are possible, and these rates all preferentially encode the
stimuli around the peak of the tuning curve.

To summarize, features of the SSI curves of Figure 1B and
1D can be understood from the underlying specific informa-
tion of responses. Responses are informative for two separate
reasons, which we will refer to as ‘‘fine discrimination’’ and
‘‘coarse discrimination.’’ Fine discrimination involves distin-
guishing between neighboring stimuli, which is most easily
done in high-slope regions of the tuning curve where
responses to neighboring stimuli are most distinct. At the
same time, high firing rates stand out above all other
responses, and thus can be used for coarse discrimination
between stimuli around the peak of the tuning curve and all
other stimuli. Both types of discrimination are important for
identifying stimuli, but the relative importance of these two
types of discrimination is influenced by the amount of
neuronal variability. As a result, the amount of neuronal
variability changes the relative importance of these two
effects, with fine discrimination being more important for
low noise, and coarse discrimination more important for high
noise.

We show in the Supporting Information that the transition
from ‘‘high-slope/fine-discrimination’’ encoding at low noise
to ‘‘peak-firing-rate/coarse-discrimination’’ encoding at high

noise occurs for two other information-based metrics of
stimulus encoding (Protocol S2), and is robust to the exact
form of noise model used (Protocol S1).

The SSI in Experimentally Characterized Neurons
The preceding example illustrates behavior of the SSI that

is representative of many neuronal tuning curves. We next
calculate the SSI for two examples of neurons with tuning
curves and noise parameters taken from experimental data
(see Materials and Methods): orientation-tuned neurons in
the primary visual cortex [8] and wind-detecting neurons in
the cricket cercal system [9].
Figure 2A shows two examples of V1 orientation tuning

curves reported by Kang et al. [8] (thin lines) and the resulting
SSI. As in the previous tuning curve example, a transition in
the maximum SSI is shown with increasing noise level.
Neuronal variability in these neurons is described by Poisson
statistics [8], for which the ratio of the variance in the number
of spikes resulting from a given stimulus to the mean number
of spikes (known as the ‘‘Fano factor’’) is one. This implies
that the neuronal variability, as measured by the ratio of the
standard deviation to the mean number of spikes produced,
decreases as 1=

ffiffiffiffi
N
p

, where N is the mean number of spikes
resulting from each stimulus. Therefore, neurons that
produce large numbers of spikes (due to either high firing
rates or long counting windows) will have relatively low noise
levels. Figure 2A (top) shows such an example for a neuron
whose mean firing rate is 33 the average firing rate of the
population measured by Kang et al. [8]. The SSI peak for this
low-noise case is located close to the high-slope portions of
the tuning curve (Figure 2A, top), although the peak at h¼0 is
nearly as large. In contrast, the SSI of a V1 neuron with the
mean firing rate is largest at the peak (Figure 2A, bottom),
reflecting that the V1 neurons with average properties of this
data set are in the high-noise regime.
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Figure 2. The SSI for Experimentally Measured Neurons

(A) The SSI for two orientation-tuned V1 neurons: one with the average
firing rate of the studied population (bottom) and one with 33 the
average firing rate (top). Since the neuronal variability is given by Poisson
statistics [8], higher firing rates correspond to lower noise (see text). (B)
SSI for a cricket cercal neuron [9] for low (13, top) or high (33, bottom)
noise levels.
DOI: 10.1371/journal.pbio.0040092.g002
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We next consider the SSI for a single neuron with
parameters corresponding to those measured in the cricket
cercal system [9]. The cricket has a set of four wind-sensitive
neurons whose tuning curves have approximately identical,
truncated cosine shape but with peaks offset by 908. Cosine-
shaped tuning curves have been widely used to describe the
sensory responses in a wide variety of systems (for a summary,
see Salinas and Abbott [10]). Unlike the previous example of
V1 neurons, the level of variability of these neurons was
found to vary linearly with firing rate [9] (see Materials and
Methods).

Figure 2B (top) shows the tuning curve (thin lines) and the
corresponding SSI (thick line) for one such neuron. Con-
sistent with theoretical studies of this neuron [10,11], we find
that the maximum SSI does not occur at the peak of the
tuning curve h0 ¼ 0. Rather, the stimuli with the largest SSI
are located at 6678, close to the maximum slope of the tuning
curve (which in this case is located at the outside edges of the
tuning curve).

For higher noise levels, such as might occur for example in
less idealized wind conditions, there is again a transition in
the peak of the SSI from the maximum-slope to the
maximum-firing-rate portions of the tuning curve. For
example, when the noise level is increased by 33, the SSI
displays a clear peak at the maximum firing rate (Figure 2B,
bottom).

SSI for a Four-Neuron Population
Sensory systems commonly mitigate the effects of noise by

encoding the same stimulus features with several neurons.
Here we calculate the information conveyed about a given
stimulus by a small population of neurons and then estimate
the contribution of individual neurons to this information to
see whether there is again a slope-to-peak transition in the
best-encoded stimuli.

In the context of a population, the information that each
individual neuron contributes might not be the same as the
information that this neuron would convey in isolation,
because information may be encoded redundantly or
synergistically between neurons [12]. In this light, the results
presented above (Figures 1 and 2) can be considered as
assigning a primary role to the evaluated neuron, so that the
role of the remaining neurons in the population is to provide
missing information not provided by this first neuron. Below
we consider the opposite limit and calculate the ‘‘marginal
contribution’’ of a single neuron to the information already
provided by all other neurons in the population, i.e., we
calculate the difference in population information resulting
from removing the neuron from the population. The
calculation of the population SSI proceeds identically to that
for a single neuron except that the single-neuron firing rate r
is replaced by a vector of firing rates r ¼ fr1,r2,. . .,rNg
representing the responses of each of the N neurons in the
population. We first calculate this population SSI for the
four-neuron cricket cercal population parameterized exper-
imentally by Miller et al. [9] (see Materials and Methods) and
with tuning curves shown in Figure 3A. We then define the
‘‘marginal SSI’’ of a neuron in the context of a population as
the difference between the four-neuron population SSI and
the SSI of the population of the remaining three neurons
after the single neuron of interest is removed.

The SSI for the four-neuron population with the measured

noise level is shown in Figure 3B (thin line). For this relatively
low level of noise, there are eight peaks in the population SSI,
located near the points of maximal slope of all four neurons.
This population SSI is clearly related to the single neuron SSI
of Figure 2B (thick line), with each neuron contributing two
of the population peaks.
Figure 3C and 3D (thin lines) show the population SSI with

33 and 53 this noise level respectively. For these higher noise
levels, the peak of the population SSI shifts to the points of
intersection of the tuning curves, where the effect of noise is
reduced by the cooperative encoding of the neighboring
neurons. Even at 53 the noise level (Figure 3D), the peaks in
the population SSI do not transition to the locations of the
individual tuning curve peaks.
In contrast, the location of the largest marginal SSI does

exhibit a slope-to-peak transition, reflecting a change in the
contribution of the individual neurons with increasing noise
level. Consider the neuron centered at h¼0 (Figure 3A, bold).
For low noise levels (Figure 3B), the marginal SSI (thick line)

Figure 3. Population SSI and Marginal SSI in the Context of a Four-

Neuron Population

(A) Tuning curves of the cricket cercal system interneurons studied. (B–D)
Population SSI (thin line) and marginal SSI of the center neuron (thick
line) for low (13), medium (33), and high (53) noise cases, demonstrating
a transition in the maximum marginal SSI from slope (1) to intersection
(2) to peak (3).
DOI: 10.1371/journal.pbio.0040092.g003
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is highest near the maximum slope of the tuning curve (line
1). The low marginal SSI near the tuning curve peak reflects
the redundancy of the information encoded by the high-
lighted neuron with information encoded by neighboring
neurons. This situation changes at higher noise levels: at 33
this noise level (Figure 3C), the largest marginal SSI
transitions to the location of the intersections of the tuning
curves (line 2), and at 53 the noise level (Figure 3D), the
largest marginal SSI is at the peak of the tuning curve (line 3).

Thus, the marginal contribution of a single neuron to the
information encoded by a population of neurons undergoes a
transition from slope to peak but at a higher noise level than
the same neuron considered in isolation (53 versus 33),
reflecting the effective reduction in the network noise level
due to population averaging. In considering both the neuron
in isolation (Figure 2B) and its marginal contribution to the
remainder of the population (Figure 3), we describe two
limits of its contribution to the population information about
each stimulus. What is notable is that in both extremes, as
noise increases, the maximum of the SSI transitions from the
high-slope region of the tuning curve, where fine discrim-
ination can be sensitively performed, to the peak of the
tuning curve, where coarse discrimination is most important.

Application to Discrimination Tasks
Thus far we have considered how well stimuli are encoded

by a neuron in situations when all values of h are equally
probable. In such cases, we have shown that the degree of
neuronal variability affects the relative importance of fine
discrimination, which favors stimuli located in high-slope
regions of the tuning curve, versus coarse discrimination
which favors stimuli located near the tuning curve peak.

The effects of these two types of discrimination can be
isolated in the context of two-alternative discrimination tasks.
In these tasks, the ability to discriminate between the two
stimuli, s1 and s2, is related to the separation of their two
corresponding response distributions p(rjs1) and p(rjs2). For
fine discrimination tasks, these distributions will be separated
in proportion to the slope of the tuning curve between the
stimuli. As a result, pairs of stimuli located in regions of high
slope will be more distinguishable than pairs located near the
tuning curve peak. This is reflected in the average SSI (Figure
4A) of the generic model neuron from Figure 1 during a fine
discrimination task with stimuli located at 638 from a central
angle h. The maximal SSI is at high-slope regions and does not
change location with increasing noise level (low noise, solid
line; high noise, dashed line). Although nearby stimuli become
less distinguishable with increasing neuronal variability, they
are always most distinct from each other in higher slope
regions. To demonstrate the robustness of these results, the
SSI for 43 the high-noise case is plotted as well (dotted line).

Another common discrimination experiment requires the
subject to distinguish between opposite instead of nearby
directions [4,13]. Because most tuning curves are less than
1808 in width, this implies that one of the two stimuli will
always be located in the flat, non-tuned ‘‘background’’
portion of the tuning curve. Therefore, in contrast to the
fine discrimination task above, the response distributions in
this paradigm are most distinguishable when one of the
stimuli is located near the peak of the tuning curve, and as a
result its responses are separated from background firing as
much as possible. This is reflected in the average SSI shown in

Figure 4B, simulated for the same noise levels considered in
Figure 4A. Again, neuronal variability does not cause a
transition from peak to slope because fine discrimination of
nearby stimuli is not relevant to the task, and neurons whose
tuning curve peak is aligned with either of the two stimuli will
always convey the most task-relevant information.
Note that where the SSI is flat, perfect discrimination

occurs because, except in the case of very high noise levels,
the two relevant response distributions are completely
distinct. The degree of distinctiveness of high firing rates is
more extreme in this context compared with the general case
of ‘‘coarse discrimination’’ previously discussed, which
factored in both discrimination from background firing rates
as well as from responses evoked by stimuli on the flanks of
the tuning curve. Experiments testing opposite-angle dis-
crimination typically introduce additional noise [13] (see
Protocol S1) to probe perceptual thresholds so that the
relevant average SSI might look more like the highest noise
example shown (dotted line).
In summary, applying the SSI to discrimination experi-

ments demonstrates how experimental context can deter-
mine whether the slope or peak of the tuning curve is most
relevant by presenting stimulus pairs that isolate each of the
two competing effects: fine discrimination versus coarse
discrimination. When both types of discrimination are
relevant, as in the simulations of Figure 1, the neuron shown
in Figure 4 exhibits a slope-to-peak transition under the same
noise conditions. Thus, the absence of noise sensitivity in
discrimination tasks is not necessarily indicative of more
general experimental paradigms.

Discussion

Previous studies have identified either stimuli at the
maximum firing rate or maximum slope portion of a tuning
curve as the best encoded by an individual neuron. Here, we
demonstrate that either can be correct depending on the
experimental context and level of neuronal variability. We
show that the results of several information-based measures of
stimulus encoding reduce to the intuition that stimuli can be
well encoded for two separate, and often competing, reasons:
either they are easily discriminated from nearby stimuli (at

Figure 4. The Maximum SSI Is Independent of the Noise Level in Two-

Alternative Discrimination Tasks

(A) The average SSI of the neuron from Figure 1 for a discrimination task
with two stimuli located at 638 centered around the angle h, for low-
noise (solid) and high-noise (dashed) conditions. The dotted line shows
the average SSI for 43 the high-noise condition, demonstrating that
there is no transition from slope to peak. For reference, the tuning curve
of the neuron is shown as a thin solid line. (B) The same neuron for a
discrimination task with stimuli atþ08 orþ1808 from h in the three noise
conditions mentioned.
DOI: 10.1371/journal.pbio.0040092.g004
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high-slope regions of the tuning curve) or they are associated
with the most distinct responses (at the tuning curve peak). We
refer to these two effects as ‘‘fine discrimination’’ and ‘‘coarse
discrimination,’’ respectively. The amount of neuronal vari-
ability greatly influences the relative importance of these two
types of discrimination, such that the best-encoded stimulus,
in the sense of having the maximum SSI, can change
systematically from a high-slope region of the tuning curve
for low noise to the peak of the tuning curve for high noise.

We have chosen to use the SSI to illustrate this basic
tradeoff between fine and coarse discrimination because it
directly ties how well stimuli are encoded to the information
of their underlying responses. As we demonstrate in Protocol
S2, the results described above match those obtained with
other information-based metrics of stimulus significance such
as the transinformation [7,11] and the local information [14].
Although the SSI was applied to relatively simple tuning-
curve-based models here, its application can be extended to a
wide-range of contexts including multi-dimensional tuning
curves and timing-based studies of neural responses [6].

Population Size Mitigates the Effect of Noise
The transition from maximum-slope to maximum-firing-

rate encoding occurs both for an isolated neuron and for a
neuron in the context of a population. However, the transition
in the context of a population occurs at a higher noise level
because the population effectively averages out uncorrelated
noise. This is consistent with the results of studies of large
populations that use the Fisher information and find maximal
information at the high-slope regions of the tuning curve [2,3].
While the SSI is computationally constrained to the analysis of
small populations, the Fisher information does not provide
accurate estimates of coding efficiency when the population
size is below a noise-dependent threshold [15]. As a result,
thesemeasures allow complementary analyses of tuning curves
that span the range of population sizes and likely agree in the
limit of large population size [16].

Thus, a key factor in this debate is the relevant number of
neurons participating in a perceptual decision. While this
number may be strictly limited in invertebrate systems such
as the cricket, entire regions of the medial temporal cortex
may be relevant to perceptual decisions based on visual
motion. However, in such cases, the effective population size
may be much smaller due to the level of correlations between
neurons, which could affect the ability to average out noise
across neuronal populations [17–20], and due to the relation-
ship between the average neuronal firing rate and the time
window over which stimuli are processed, which could affect
the ability to temporally average out noise [21].

Experiments linking the performance of individual neu-
rons to perceptual decisions bear directly on this issue
[4,5,13,22,23]. They suggest that only a subset of neurons
participate in perceptual decisions, namely those that have a
direct relationship to the task due to their feature selectivity
relative to the stimulus [4,5], which may include selectivity to
features that are irrelevant to the perceptual decision [23].
Some studies have estimated that as few as four neurons
participate in a perceptual decision in the case of opposite
angle discrimination [24], whereas other studies found that
more than 20 [5] or 100 [25] neurons must be pooled to match
behavioral performance. The discrepancy between these
studies of the number of neurons participating in perceptual

decisions could result from factors such as the difficulty of the
task or the relevant integration window over which the
neuronal and perceptual response is considered [5,26].

The Presence of a Slope-to-Peak Transition
We find that whether a given neuron contributes more

information about the slope or peak of its tuning curve
depends on the level of neuronal variability, the experimental
context, and the amount of population pooling. Although the
three information-based metrics that we have applied all
robustly find this transition, it has not been observed in
previous studies that use other metrics of stimulus encoding,
such as ROC analysis [27], the neurometric function [5], the
discrimination index [28], the Chernoff distance [8], and the
Fisher information [3]. These other metrics all measure the
ability of the neuron to discriminate between two stimuli,
which, as we demonstrated in Figure 4, explicitly neglects the
tradeoff between fine and coarse discrimination that is
present in any context where more than two stimuli are
relevant. (Note that, although the Fisher information is not
explicitly a discrimination measure, it only applies to the
large-population limit where, as demonstrated with the SSI in
Figure 3 and discussed at greater length in Protocol S2, fine
discrimination is favored.) In this light, it is possible to
interpret our results as reflecting the ability to discriminate a
given stimulus from all others in the ensemble, which is
explicitly measured by the local information [14] (see
Protocol S2) that gives very similar results to the SSI.
The focus of previous metrics on two-alternative discrim-

ination likely reflects the fact that most experiments
attempting to link single neuron encoding to perception
and behavior have used discrimination tasks to do so [29]. In
this sense, our results suggest that in an experimental task
with more than two relevant directions, the neurons
contributing most to perception may depend on the amount
of neuronal variability and the size of the relevant pool of
neurons participating. Conversely, experimental manipula-
tion of neuronal variability (as, for example, described in
Protocol S1) may be able to directly test for a slope-to-peak
transition, and the location of such a transition might reflect
both the size of the population involved and the relevant time
window of underlying coding.
Given our results, it is interesting to speculate whether a

system’s encoding strategies change depending on the
stimulus strength, state of attention, or other task specific
factors such as the reward level [30] that could affect the level
of neuronal variability. This could involve a dynamic switch
in the neural populations monitored [5,23], as discussed
above, or a change in the shape of the tuning curves
themselves with changes in stimulus properties [31].
Although tuning curves describe which stimuli cause a

neuron to fire the most, they do not reveal which stimuli are
best encoded. The analysis method presented here, by
combining average firing rate and the associated response
variability into a single metric, allows tuning curves to be
interpreted in terms of which stimuli lead to the most
informative neuronal responses. The method can be applied
to a wide variety of stimulus contexts and provides a unified
framework for interpreting a diverse set of data ranging from
two-alternative discrimination tasks to multi-alternative
encoding paradigms. As we have shown, such analyses can
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reveal effects of neuronal variability on sensory encoding that
are not obvious from the examination of tuning curves alone.

Materials and Methods

The SSI and other measures are calculated for several examples: a
‘‘generic’’ tuning curve with features common to many sensory
neurons, a visual neuron orientation tuning curve adapted from the
recordings of Kang et al. [8], and a cricket cercal neurons fit from the
measurements of Miller et al. [9].

For all tuning curve examples, the firing rate of each neuron was fit
as r(h)¼ [f(h)þ g]þ where [ ]þ denotes rectification of negative values
to zero, f(h) denotes the ‘‘tuning curve’’ function before the addition
of noise, and g denotes Gaussian noise with zero mean and standard
deviation r. For the cricket cercal tuning curve example, parameters
were taken from the measurements of Miller et al. [9] with f(h)¼ [cos(h
� h0) � 0.14]/0.86, and r ¼ A[0.048 þ 0.052f(h)]. Here, h0 is the wind
direction value that elicits the maximum average firing rate and
differs by 908 for each of the four neurons. We refer to the values
reported in Miller et al. [9] as the low-noise case, corresponding to A
¼ 1. For the high-noise cases, A ¼ 3 or 5. Note that correlations
between neurons were not reported in these experiments; therefore
we model neuronal responses as conditionally uncorrelated when
considering the population responses. However, since our methods
can be applied to arbitrarily specified joint probability distributions,
they can more generally account for any measured correlations
between responses.

For the tuning curve example of Figures 1 and 4, f(h) was taken to
be a Gaussian with a standard deviation of 308 centered at the
orientation h ¼ h0, with the same noise model described above,
although with A ¼ 0.5 for the low-noise case and A ¼ 2 for the high-
noise case. This choice of noise model was made for simplicity and for
consistency with the simulations of Figure 2B and did not affect our
qualitative results. As we demonstrate in Protocol S1, a transition
from slope to peak robustly occurs for a wide range of noise models;
examples include when the background noise or stimulus-dependent
noise are separately manipulated, when noise is determined by
Poisson statistics, and when an additional source of noise arising
from uncertainty in the stimulus is considered.

For the orientation-tuned neuron of Figure 2A, we used mean
values for V1 neurons reported in Kang et al. [8], corresponding to a
Gaussian tuning curve with a standard deviation of 22.28 and a
baseline response equal to 16% of the peak. The mean number of
spikes produced at the tuning curve peak was 39, and the noise as a
function of h obeyed a Poisson distribution about the mean spike
count. In the examples shown, we display results for neurons with no
explicit direction selectivity. This choice was made for simplicity and
did not qualitatively change our results.

The SSI was computed numerically from the joint probability

distribution p(r,h)¼p(rjh)p(h) where p(rjh) was obtained from the noise
model. For Figures 1–3, p(h) was a uniform distribution. For Figure 4,
p(h) corresponded to a discrete distribution with value 0.5 for each of
the two alternatives. For all simulations, r and h were discretized into
bins of size 0.01 Hz and 18, respectively, for the single-neuron results
and 0.06 Hz and 58, respectively, for the population results. At this
fine resolution, the results did not depend on the bin size.

Note that in the single neuron case, a particular firing rate might
be associated with stimuli either on the left or right side of the tuning
curve with equal probability. This ambiguity does not affect any of
the information measures used in this paper, since it contributes one
bit to both the stimulus entropy and the response-conditional
entropy, which cancels in the information measures. As a result,
measurements of the SSI (as well as those used in the Supporting
Information) are identical to the situation where only half a tuning
curve is considered.

For the two-alternative discrimination task (Figure 4), the average
SSI is plotted rather than the two individual SSI’s (which closely
match) because comparisons between angles in this figure do not
measure how well a given angle is encoded within a larger stimulus
ensemble (as in previous figures), but rather how well the ensemble
itself is encoded by neural responses. In this case, the average SSI is
exactly equal to another information-based measure of stimulus
encoding, the local information [14] (see Protocol S2), as well as the
mutual information between the neuron’s responses and the two
stimuli [6].

Supporting Information

Protocol S1. The Slope-to-Peak Transition Is Robust to the Noise
Model

Found at DOI: 10.1371/journal.pbio.0040092.sd001 (234 KB PDF).

Protocol S2. Information Measures of Stimulus Encoding

Found at DOI: 10.1371/journal.pbio.0040092.sd002 (428 KB PDF).
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