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Why Information Theory?
• What forms of neural response are optimal for conveying information 

about natural stimuli?

• How much does a particular neural response tell us about a 
stimulus?

• How good is our estimate of the decoding?

• Is there stimulus information in the correlated firings of groups of 
neurons?
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The neuron’s view
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Can we use this to discriminate between different stimuli?
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Discriminating between possible stimuli

• The Problem:
– Choose between two stimuli s0 and s1 with prior probabilities P(s0) and P(s1)

given the neural response r so as to minimize the probability of error

– Conditional firing rate probabilities P(r | s0) and P(r | s1) are known

Figure adapted from Bertrand Delgutte, 2003-2005

We know that neuronal 
responses are noisy

We know that populations 
of neurons may have 
similar (but not identical) 
responses to different 
stimuli

s1
s0
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Bayesian Optimal Decision Rule and the Likelihood Ratio
• Bayes’ Optimal Decision Rule:

– Given a specific value of r, choose the alternative which maximizes the 
posterior probability:

• Equivalent Likelihood Ratio Test (LRT):

• Likelihood ratio LR = 

[ ] [ ] 101 ,|| schoosethenrsPrsPif >

[ ] [ ]
[ ]

[ ] [ ]
[ ]rP

sPsrP
rP

sPsrPif 0011 ||
>

[ ]
[ ]

[ ]
[ ] 1
1

0

0

1

|
| schoosethen

sP
sP

srP
srPif >

[ ]
[ ]0

1

|
|
srP
srP



3/1/2007 BME 665/565 6

Properties of the Likelihood Ratio
• If the conditional probabilities P[ r | si ] are either Poisson or 

Gaussian with equal variances, LRT reduces to comparing the mean
response difference with a threshold γ: 

• LRT works for single neuron responses and for population 
responses

• Decision rule invariant to monotonic transformation (e.g. logarithm)
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Detection and False Alarm Probabilities

• The neural response (in general LR) is compared to a criterion to make a 
decision about which stimulus was presented

• Two types of errors: “misses” and “false alarms”
– PF is the probability of false alarm
– PD is the probability of detection; PM = 1-PD is the probability of a miss

P(R|S0)

P(R|S1)
γ

PF

PD

( ) ( 0) ( 1) (1 )P Error P S PF P S PD= + −

Poisson 
Example

Figure adapted from Bertrand Delgutte, 2003-2005
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Receiver Operating Characteristic (ROC)

• The area under the ROC curve gives a distribution-free measure of 
performance

ROC 
Curves

Conditional 
Probabilities

(Poisson)

P(R/S0)

P(R/S1)

Figure adapted from Bertrand Delgutte, 2003-2005
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d’ as a measure of performance

• If the conditional probabilities P(r | s0)
and P(r | s1) are Gaussian with equal 
variances, then

completely determines the 
performance (the ROC curve)

• If variances are unequal under the two 
alternatives, they can be averaged

σ
rd Δ
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• Many probability distributions (including Poisson) approach a Gaussian 
when the mean response becomes moderately large

• d’ is a poor measure of performance when the number of spikes is very 
small or when the two stimuli are widely separated
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Example: Auditory response to bird song

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 

CM: implicated in 
the perception of 

familiar sound 

Field L: primary auditory 
region, tonotopically
organized 

MLd:  auditory 
midbrain, 

tonotopic with v-
shaped tuning 

curves
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Encoding the stimulus characteristics

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 

A spectrogram of zebra finch 
song with example spectro-
temporal modulation patterns 
below. Red indicates high 
intensity and blue indicates 
low intensity.

Spectogram: a windowed discrete-time Fourier transform 
of a signal using a sliding window. 

Modulation: how much a signal varies around a carrier signal.
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Bird song (stimulus) characteristics

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 

Modulation power spectra (MPS) 
for song and modulation-limited 
noise were calculated by taking 
the two-dimensional Fourier 
transform of the auto-correlation 
matrix of the sound spectrogram

The song MPS shows that zebra 
finch song contains a limited range 
of modulations; high frequency 
spectral modulations occur at low 
temporal modulation frequencies, 
and high temporal modulations 
occur at low spectral modulation 
frequencies 
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Comparing bird song to other stimuli

• All show high power at low frequencies 
and rapid decreases in power as 
frequency increases

• Sound classes differ in the distribution 
of power across temporal modulation 
frequencies
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Noise stimulus characteristics

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 

A spectrogram of the 
modulation-limited noise

For finch song:
• temporal modulations <50 Hz
• spectral modulations <2 cyc/kHz
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Spatiotemporal receptive fields

• STRF calculated using a generalized reverse correlation method:

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 
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Red: presence of sound 
is reliably associated with 
excitation
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reliably associated with 
spiking 
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Modulation transfer function: tuning of the neuron

• MTF is the spatial frequency response of a signal; it is the contrast at a 
given spatial frequency relative to low frequencies.

• The modulation transfer function (MTF) for a neuron was calculated by 
taking the modulus of the two-dimensional Fourier transform of the STRF

• Ensemble modulation tuning for all the neurons in one brain region was 
measured by averaging the MTFs for all cells to get a single ensemble 
modulation transfer function (eMTF)

• Allows comparison between modulation characterizing neuronal response 
and modulations characterizing types of stimuli

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 
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eMTFs: Response to modulated noise

• Spectral modulation tuning 
low pass in all three 
auditory regions

• Temporal modulation 
tuning was band-pass in 
all regions

• Neurons in Field L have 
broader spectral tuning 
curves (perhaps because 
there are more types of 
neurons)

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 
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eMTFs : Similarity to bird song

• In contrast, the modulations to which the most tuning gain was devoted 
were not the most strongly represented temporal modulations in song. 

The low-pass spectral 
modulation tuning 
matches zebra finch 
song in that most of the 
power in song occurs at 
low spectral modulations

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 
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Comparison to a Gaussian tuning curve

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 

eMTF’s of MLd
and Gaussian 
model

Spectograms of 
sample stimuli

Predicted ensemble 
responses 
(convolution of 
stimulus and STRF 
obtained from the 
eMTF’s)
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Performance of the Gaussian Model

Woolley et al., Nature Neuroscience 8, 1371 - 1379 (2005) 

D' uses the Euclidean distance between the time-varying responses to 
two sound segments: 
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Entropy rate of spike trains
• The entropy rate of a spike train gives an upper bound on the information 

about the stimulus that can be transmitted by the spike train

• It roughly measures how “surprising” a set of responses is – the amount of 
information about the stimulus carried by the response

• We define a measure of surprise associated with the probability of a 
response r, as: 

• We assume responses from two neurons are independent, and require that

which leads us to use a logarithm for h

• By convention, the logarithm is base 2, and the information is reported in 
“bits”:

• Then, the Shannon entropy measure is the average of h over all possible 
responses
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Mutual Information
• The entropy H(s) represents the uncertainty about the stimulus in 

the absence of any other information

• The conditional entropy H(s|r) represents the remaining stimulus 
uncertainty after the neural response has been measured

• I(s,r)=H(s)-H(s|r) is the mutual information between s and r;  it 
represents the reduction in uncertainty achieved by measuring r

H(s|r)        H(r |s)

H(s)
I(s,r)

H(r)

Buračas and Albright, Trends in Neurosciences, 22(7): 303-309  (1999)
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Calculating Im
• H(s|r) is hard to measure because it requires estimating the stimulus from 

neural response

• By symmetry, I(s,r) = H(r ) – H(r |s)

• H(r |s) is the entropy of the part of the neural response that is NOT 
predictable from the stimulus, i.e. the noise in the response

• If we average over repetitive presentation of the same stimulus, we get an 
estimate of the entropy of the noise:
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Information rates and coding efficiencies in sensory neurons

Buračas and Albright, Trends in Neurosciences, 22(7): 303-309  (1999)
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Information Theory Pro’s and Con’s
• Pros

– Does not assume any particular neural code

– Can be used to identify the stimulus features best encoded by neurons 
or to compare effectiveness of different putative neural codes

– One number summarizes how well stimulus set is coded in neural 
response

• Cons
– Information estimate depends on stimulus set.  Stimulus probabilities in 

environment hard to specify.

– Does not specify how to read out the code: the code might be 
unreadable by the rest of the nervous system

– For all but simplest examples, estimation of mutual information requires 
huge amount of data.  Methods that try to circumvent data limitations 
(e.g. stimulus reconstruction) make additional assumptions (e.g.
linearity or Gaussian distribution) that are not always valid.


