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Summary
Individual neurons display characteristic firing patterns
determined by the number and kind of ion channels in
their membranes. We describe experimental and compu-
tational studies that suggest that neurons use activity
sensors to regulate the number and kind of ion channels
and receptors in their membrane to maintain a stable
pattern of activity and to compensate for ongoing pro-
cesses of degradation, synthesis and insertion of ion
channels and receptors. We show that similar neuronal
and network outputs can be produced by a number of
different combinations of ion channels and synapse
strengths. This suggests that individual neurons of the
same class may each have found an acceptable solution
to a genetically determined pattern of activity, and that
networks of neurons in different animals may produce
similar output patterns by somewhat variable underlying
mechanisms. BioEssays 24:1145–1154, 2002.
� 2002 Wiley Periodicals, Inc.

Introduction

The nervous system develops as a consequence of experi-

ence and genetically programmed events. The brain of the

human adult must retain the capacity to respond to novel

challenges by learningwhile, at the same time,maintaining the

essential structure of the networks that allow for sensation and

action. This challenge is especially daunting if we remember

that neurons can live for up to one hundred years, but the ion

channels and receptors that underlie electrical signaling and

synaptic transmission turn over in the membrane in minutes,

hours, days, or weeks. Thus while the circuits that allow re-

cognition and naming of a tree perform impeccably for scores

of years, the components of the networks that do so are con-

stantly rebuilding themselves. It is possible that the nervous

system can exploit the same cellular mechanisms to imple-

ment plasticity for learning and homeostatic stability, as plastic

change must always occur on the background of ongoing

control of neuronal stability and synaptic strength.

The operation of any neuronal circuit depends on the

interaction between the intrinsic properties of the individual

neurons and the synaptic interactions that connect them into

functional ensembles.(1) Therefore, one of the challenges of

neuroscience is to explain how system dynamics depend on

the properties of individual neurons, the synaptic architecture

bywhich they are connected, and the strength and time course

of the synaptic connections. Computationalmodels are invalu-

able for trying to explain in detail: (a) how individual neuronal

properties depend on the number, kind, and distribution of ion

channels in each neuron, and (b) how network properties

depend on the properties of the component neurons and their

connections. Because proteinmolecules in themembrane are

constantly turning over, it becomes critical to ask how sensi-

tively the neuronal activity patterns and network dynamics

depend on the densities of channels and strength of synapses.

In this article, we will first discuss the construction of semi-

realistic model neurons and networks, with particular empha-

sis on the issue of how tightly controlled the parameters

of individual neurons must be for them to produce a given

pattern of activity. We will then discuss a class of self-tuning

models(2–9) in which activity is used as a feedback signal to

allow neurons and networks to maintain optimal activity pat-

terns. We will conclude with a brief discussion of recent work

that suggests that synaptic strength is also homeostatically

controlled.(10)

Conventional models of neurons show a variety

of intrinsic membrane properties

Biological neuronsexpressa largenumberof different voltage-

and time-dependent currents. An individual neuron may have

anywhere from four or five different currents to twelve or

fifteen, or more. These include the commonly known currents

first described by Hodgkin and Huxley,(11) a variety of other

Ca2þ and Kþ currents, hyperpolarization activated currents

such as IH, and a leak current.(12) Much of the field of cellular

biophysics consists of detailed voltage clamp measurements

from one or another cell type in order to determine which

currents are expressed in a given cell type, and their current

densities and voltage dependencies.(13) Models built from

these biophysical data usually have the same form: each

current I is described by a set of differential equations that

captures the voltage and time dependence of activationm and
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inactivationhof the current, the reversal potentialEof theopen

channels, and the maximal conductance, or the number of

channels, g (see Box). With the hope of replicating the ele-

ctrophysiological properties of the neuron in question, these

are then incorporated into either a single-compartment model

or a multicompartment model of the neuron in which the

voltage in each of the electrically connected compartments is

described by

C
dV

dt
¼ �

X

i

Ii � Ineighbors

where C is the membrane capacitance of the compartment

and Ineighbors is the net current flowing into the neighboring

compartments.(14–23) In a single compartment model, the

Box 1

Most model neurons in this review are so-called Hodgkin–Huxley type models because their ion currents are described by differential

equationssimilar to those first proposedbyHodgkinandHuxley in their seminalworkon the squidgiant axon(11). This boxexplainshowsuch

a model neuron is constructed from experimental data and how it can be used to simulate neuronal activity.

The left part of the figure shows a cartoon of a biological neuron with only two types of ion channels in its membrane. To characterize the

currents flowing through these channels, each current can be isolated by pharmacologically blocking the other current. The remaining

current can then be studied by itself, typically by applying voltage steps to the neuron and recording the resulting membrane currents as

shown in the figure. Thevoltage-dependenceanddynamics of every individualmembraneconductancearedescribedbyaset of differential

equations whose parameters can be determined by fitting them to families of such current traces in response to voltage steps of different

amplitudes.

Ion channels are membrane proteins that can be either in an open state that permits ion flow or in a closed state that prevents it. The

probability that a channel is open ismphq, wherem and h are so-called gating variables whose value depends on the membrane potential,

and p and q are integer numbers. Because every channel of a given type is open with probabilitymphq, the current flowing through a large

number of channels of this type is I¼ gmphq(V�E), whereg is the conductance if all channels are open,V is themembranepotential andE is

the reversal potential of the current.

The voltage-dependent dynamics of the gating variablesm and h are given by the differential equations in the blue and red boxes, where

m1(V ) and h1(V ) are steady state values for the two variables and tm(V ) and th(V ) are the time constants with which the steady state is

approached.

Once all the parameters in these differential equations are known from fits to experimental current traces, the set of equations completely

characterizes the membrane currents in the neuron. The equation CdV/dt¼�� Ii describes how the membrane potential changes due to

the sumof all currents in a neuron and themembrane capacitanceC. This set of differential equations describes the electrical activity of the

biological neuron–it constitutes the model neuron.

Simulating the activity of themodel neuron involves solving the set of differential equations given in the figure to obtain the time course of

the membrane potential V. Because the differential equations are non-linear, this can usually not be done analytically–instead, the

equations are integrated numerically by a computer.
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entire neuron is represented as an isopotential sphere, so all

spatial localization of ion channels and receptors is lost. In

contrast, multicompartment models couple together indivi-

dual compartments that can differ in the density and kind of

ion channels and receptors, thus capturing loosely the com-

plex spatial segregation of membrane proteins seen in bio-

logical neurons. Both kinds of models are widely used in

neuroscience, as some problems require the detail possible

with multicompartment models, while others benefit from the

relative simplicity of single compartment models.

Figure 1A shows an example of a single compartment

modelwith five voltage-dependentmembrane currents. As the

values of the maximal conductances for these currents are

varied (not shown), the behavior of the model changes, from

silence (top panel), to firing action potentials tonically (middle

panel), or to firing bursts of action potentials separated by a

hyperpolarized interburst interval (bottom panel). Studies of

these kinds of models have led to useful intuitions about how

individual currents shape neuronal firing. For example, IA is a

Kþ current that transiently activates and rapidly inactivates.(24)

Early models incorporating this current into a Hodgkin-Huxley

spiking axon revealed that this current could slow the rate of

spiking and control the latency to firing after a hyperpolariza-

tion.(14,15)

The approach of building a model and then varying the

properties of one of its currents at a time to understand the

possible role of that current in shaping the firing properties of a

neuron has obvious value when the initial model contains re-

latively few currents, but becomes less useful when the initial

model contains a number of currents. This is because in more

complex models similar firing properties can be produced by

widely different combinations of currents(25) and, conse-

quently, the effect of varying the number of channels of one

current can differ considerably depending on the numbers of

each of the other kinds of channels in the neuron.(25) Figure 1B

shows data plotted from a study in which the authors con-

structed a model neuron with five different voltage-dependent

currents, and then varied themaximal conductancesof eachof

them separately. The thousands of model neurons were then

classified as silent, tonically firing, or bursting (Fig. 1A). The

plot in Fig. 1B shows that there were model neurons of each

activity patternwith both high and low values of each of the five

conductances, illustrating that no single conductance uniquely

determines the activity state of the neuron.(25) Figure 1C

Figure 1. Dependenceofmodel neuron activity on the underlyingmembrane conductances.A:Three examples ofmodel neuron activity

patterns. Different combinations of maximal conductances of five voltage-dependent currents produced a silent model neuron (top panel),

a tonically spiking (middle panel), and a bursting model neuron (bottom panel). B: Activity states observed when all five conductances

were varied independently. For each conductance, the values that led to silent, spiking or bursting behavior are reported as blue, red or

yellow dots and the mean values and standard deviations are indicated as circles and error bars. For almost any value of any of the five

conductances, all three activity stateswere observed, thus no single conductance predicts the activity pattern.Modified fromGoldmanMS,

Golowasch J,Marder E, Abbott LF. JNeurosci 2001;21:5229–5238with permission of theSociety of Neuroscience.C:Voltage traces (left)
and sodium and delayed rectifier conductances (right) for three 1-spike-bursters show that similar activity can result from very different

conductance combinations. D: Sodium and delayed rectifier conductances obtained by averaging the conductances of 160 one-spike

bursters with similar activity patterns (right). The voltage trace produced by the average conductances (left) has three spikes per burst,

showing that pooling conductance measurements from biological neurons does not necessarily result in a model neuron that reproduces

their behavior.Modified fromGolowasch J,GoldmanMS, Abbott LF,Marder E. JNeurophysiol 2002;87:1129–1131, with permission of the

American Physiological Society.
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shows three examples of so-called one-spike bursters, that

is, neurons that are generating single spikes followed by a

sustained plateau phase. Although the voltage trajectories

of these three model neurons are quite similar, they vary

dramatically in their conductance densities: neuron 1 has a

high Naþ conductance and a low delayed rectifier Kþ con-

ductance, neuron 2 has low values of both conductances, and

neuron 3 has a low Naþ conductance and a high delayed

rectifier Kþ conductance.(26) Thus together, the data in

Fig. 1B,C indicate that different combinations of conductances

can produce similar activity patterns, and that no single current

individually determines the firing properties of a neuron.

Consequently, variation of the conductance density of a given

current may produce qualitatively different effects on neuronal

firing properties, depending on the densities of all the other

currents in the cell.(25)

Because the brain is composed of numerous neuron types,

with disparate electrophysiological firing properties, there is

great interest in characterizing each of these in terms of the

currents that give rise to those properties. The diversity of

channel subtypeswith their consequently different biophysical

properties requires the collection of detailed biophysical data

from each cell type of interest.(12) Therefore, the enterprise

of building a biophysically realistic model of a given cell type

is fraught with several difficulties. (1) The usual methods of

fitting biophysical data may not always accurately capture the

full voltage and time dependence of the currents.(13) (2) It is

almost impossible to separate adequately all of the currents

expressed in a given cell type to accurately and completely

characterize all of the cell’s currents. Consequently, almost all

biophysically realistic model neurons include some data

directly measured from the actual neurons to be modeled,

and other data from other cell types from the same animal, or

even fromother species.Although the reason that forces this is

clear, nonetheless, it is possible that the properties of the

currents not measured directly from the neuron to bemodeled

may significantly compromise the conclusions that can be

drawn from studying themodel. (3) It is impossible tomeasure

all of the currents in an individual neuron, and therefore pooled

data from multiple neurons are used to constrain models.

An underlying assumption of using mean values from

pooled data is that all of the individual neurons of a given type

have essentially the same set of conductances, and that any

measured variance in conductance densities is produced by

measurement error, rather than true differences in conduc-

tance densities. Recent work calls this assumption into ques-

tion. The crab stomatogastric ganglion (STG) contains one

lateral pyloric (LP) and one inferior cardiac (IC) neuron.

These neurons are identifiable in every preparation, and

therefore one can ask how much variance in measured

conductance densities is found in these neurons from animal

to animal. Measurements of three different Kþ currents in

multiple LP and IC neurons showed variations in maximal

conductance densities of 2- to 4-fold, although there was no

systematic relationship among these measured current

densities.(4,25) Moreover, the measured Kþ current densities

in IC neurons changed as a function of activity over several

hours.(27) This demonstrates that a cell’s recent history of

activity may alter the conductances that are measured in a

typical voltage clampexperiment.Consequently, it is likely that

the values that are measured from slice and culture experi-

ments in which the natural patterns of activity of a network are

altered prior to measurement will differ from those that contri-

bute to network dynamics during behavior.

Building models from measured means of a population of

neurons with variable underlying conductances can lead to a

model that fails to replicate the behavior of the neurons used

to construct the model.(26) As previously described, Fig. 1C

showsvoltage traces from three individual neuronswith similar

waveformsbutwith quite differentNaþanddelayed rectifierKþ

conductances. When a model was built using the mean Naþ

and delayed rectifier Kþ conductances of 160 neurons with

similar waveforms, the model neuron was not a single spike

burster, but rather fired three spikes per burst.(26) In this case,

averaging fails because the phenotype depends not on one

single conductance, but on the correlated levels of several and

illustrates that, although building models from average data is

often reliable, it is not necessarily so. Unfortunately for experi-

mentalists, it is usually impossible to predict when averaging

will fail, and also usually impossible to predict which combina-

tions of currents will together predict the behavior of a neuron.

Dynamically regulating model neurons can

‘‘self-tune’’ their intrinsic properties

The underlying assumption of building models in which the

maximal conductance of each current is a fixed parameter

is that each neuron has a fixed number of each of its ion

channels, and that a neuron’s activity is a consequence of the

number and distribution of its ion channels. This assumption

presumes that the number of each kind of membrane channel

is tightly controlled by transcriptional and translational pro-

cesses. An alternative paradigm is to assume that, early in

development, as part of setting a neuron’s identity, its target

activity levels are specified. These target activity levels are

thenused to regulate thenumber of each kindof channel found

in the membrane. Thus, according to this way of thinking, it is

the final activity of a neuron that is tightly controlled, rather than

the number of each kind of ion channel individually.

A number of models have been built using these ideas.

These model neurons can self-tune to find a combination of

conductance densities consistent with a target activity pattern.

These models were initially designed to account for stability in

the face of ongoing channel turnover, but also have some

additional interesting attributes. The underlying premise in

this class of models is that, when the activity level drifts away

from an equilibrium state, intracellular sensors detect these
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changed activity levels, and trigger changes in the number

and/or distribution of ion channels.(3–5) In the early generation

of thesemodels,(2,3) the activity sensor was a simple measure

of the bulk intracellular Ca2þ as a great deal of experimental

data indicates that intracellular Ca2þ concentrations fluctuate

as a function of activity.(28,29) In these models, the stipulation

was that excess activity, as detected by the sensor, would

trigger a slow decrease in the inward currents and a slow

increase in the outward currents, according to a simple

negative feedback rule of the form

t
dg

dt
¼ � Ca2þ� �� �

� g

where the sensor s([Ca2þ]) is a sigmoidal function of the Ca2þ

concentration with a different midpoint and slope for each

conductance and the regulation time constant t can also be

different for different conductances (Fig. 2). In later models,

multiple sensors were used: a fast, slow and DC filter of the

Ca2þ current.(4) In this class of models, each membrane cur-

rent was individually controlled to a greater or lesser degree

by these three sensors. In all of these models, the change in

conductance density must occur slowly relative to the firing

properties of the neuron. In otherwords, the change in channel

density should be occuring on a time scale of minutes or hours

rather than the milliseconds or seconds involved in neuronal

signalling.

Fig. 3 shows an example of a self-tuningmodel as it adjusts

its conductances to produce its equilibrium activity level. This

model has twoCa2þ currents, aNaþ current, three different Kþ

currents, and three activity sensors. The maximal conduc-

tance of each of the currents is plotted over time, and the

voltage traces that the model produces at points during the

tuning process are indicated. At the beginning of this sim-

ulation, theneuronwas firing single largeactionpotentials, and

it had a large Naþ conductance. As the neuron moved to its

final equilibrium state, it downregulated its Naþ conductance

and also altered all of its other conductances (Fig. 3B). Note

that quite similar activity patterns are produced at several

points (3, 5, 6, 7, 8) during this adjustment process, and that

there is a fairly significant change in conductance density that

produces relatively little change in firing properties as the neu-

ron converges towards its equilibrium point (Fig. 3A). The

implications of this are profound: biological neurons that are

constantly ‘‘self-tuning’’mayhavequitesimilaractivitypatterns

but significantly different conductance densities at different

times. Moreover, different individual neurons with similar acti-

vities, again may be expressing significantly different con-

ductance densities.

Biological neurons change their properties

in response to altered activity levels

There is a growing biological literature consistent with the

notion that biological neurons may be constantly tuning their

conductance densities in response to their own activity levels.

Firstly, numerous ion channels have been ‘‘knocked-out’’ or

deletedwith relatively little obvious phenotype. Inmany cases,

the phenotype of the knock-outs is less than would have

been expected from pharmacological blockades of the

Figure 2. Cartoon illustrating basic mechanisms of activity-dependent homeostatic regulation in model neurons and circuits. The

intracellular calcium concentration in biological and model neurons is a good measure for the cell’s electrical activity. If the activity level is

too low (left), the calcium concentration falls below its target value. Upregulation of depolarizing membrane currents and downregulation

of hyperpolarizing membrane currents in response to the lowered calcium concentration can return the neuron’s activity to its target level.

Similarly, increasingexcitatoryanddecreasing inhibitory synaptic inputs canact as anegative feedback to stabilize the level of activity. If the

firing rate and thus the calcium concentration is too high (right), regulating membrane and synaptic currents in the opposite direction will

also re-establish the target activity level.
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same ion channel. This is consistentwith the interpretation that

the absence of a gene for an ion channel can often be

compensated for, as neurons self-tune to similar activity

patterns with a different mix of ion channels. Secondly,

during development there is a sequential acquisition of the

expression of different channel types.(30) It is now clear that

this normal sequential progression of ion channel expression

depends on activity early in development(31,32) and can be

altered by precocious expression of channels.(33) This spon-

taneous activity and early excitability is associated with

changes in intracellular Ca2þ that appear to play a critical role

in thedevelopment of excitability.(34,35)Moreover, the increase

in activity and associated intracellular Ca2þ seems to be

required for the appropriate development of the outward Kþ

currents.(34) This is consistent with intracellular Ca2þ concen-

trations being an internal sensor of a neuron’s activity.

The most direct evidence in favor of the idea that neurons

monitor their own activity and then regulate their conductance

densities to maintain a homeostatic level of activity comes

from experiments with cultured neurons. In the experiments

shown in Fig. 4, cultured cortical neurons were incubated

for several days with tetrodotoxin (TTX) to silence them.

Subsequently, when the TTX is washed out, the neurons

are more excitable than before the TTX treatment (Fig. 4A).

This increased excitability is caused by an increased Naþ

current density and a decrease in Kþ current densities

(Fig. 4B,C).(36,37)

A cell-autonomous tuning rule can produce

network stability

To what extent can neuron-autonomous rules govern the

stability of network dynamics? Data suggest that cell-

autonomous activity sensors might be sufficient to stabilize

network function. If the STG is removed from descending

modulatory inputs, it slows down or becomes silent, as the

effects of the modulatory substances that maintain the burst-

ing properties of the neurons wear off. These preparations

remain silent or relatively inactive for a period from 1 to 5 days,

after which they resume cycling.(5,38–40) The recovery of

function is accompanied by altered patterns of channel

expression,(41) consistent with enhanced cellular excitability

triggered by the loss of the modulatory drive that was pre-

viouslymaintaining pyloric rhythmactivity. At this point, it is not

clear whether the primary signal for the changed excitability is

the loss of the neuromodulators themselves, or of the activity

that they evoke. Nonetheless, amodeling study using neurons

that were able to self-tune their conductance densities,

demonstrated that a network can self-organize with only the

tuning signals in the individual neurons of the network.(5)

Tuning the voltage dependence of currents

In most of the self-tuning models described above the voltage

dependence of the currents was not tuned and only the

maximal conductance, or number of channels, was regulated.

However, neuromodulators can dramatically alter the voltage

dependence of currents, and phosphorylation of channels

or changes in subunit composition can also affect the shape

of the activation and inactivation curves used to describe

voltage-dependent currents.(12) Small shifts in the voltage

dependence of currents that activate close to the threshold for

action potential or burst production canmarkedly influence the

properties of neurons.(42) Therefore, it is also important for

Figure 3. Activity-dependent conductance regulation in a

model neuron with three calcium sensors. A: Maximal con-

ductances (colored traces) and voltage traces at different times

(insets) as a regulating model neuron approaches its target

activity. Note that similar firing patterns (3, 5–8) result from

different combinations of conductances during the regula-

tion process. B: Cartoon illustrating the downregulation of the

sodium (blue), calcium-dependent and transient potassium

(yellow and green), and delayed rectifier (red) conductances

and upregulation of the transient and slow calcium conduc-

tances (purple and black) between the initial state of the model

and its target activity and the accompanying increase in

intracellular calcium to the target level.

Review articles

1150 BioEssays 24.12



neurons to appropriately regulate the voltage dependence of

their currents. Recent modeling studies(7,8) use an optimiza-

tion procedure that results from tuning of all the properties of

a current, both the maximal conductance and its voltage

dependence.

Homeostatic regulation of synaptic inputs

A great deal of both experimental and theoretical work

addresses the mechanisms of modifications of synaptic

strength in learning and development, and the consequences

of these changes for network structure. It has only been

recently that attention has been paid to the mechanisms by

which neurons regulate the strength of all of their synaptic

inputs, so that they control their total synaptic drive. This has

been termed ‘‘synaptic scaling’’ and has been elegantly

studied in cultured cortical neurons.(43–48) In these experi-

ments, the authors have carried out long-term manipulations

of activity by placing the cultures in TTX or other pharmaco-

logical treatments, and have demonstrated that the excitatory

synaptic inputs increase and inhibitory inputs decrease when

the neuron is deprived of activity (Fig. 5).

The Drosophila neuromuscular junction has been exten-

sively used as a preparation with which to study homeostatic

regulation of the synaptic drive to amuscle fiber.(10,49) In these

experiments, the postsynaptic muscle fibers were hyper-

polarized by overexpressing Kþ channels. In response to this

perturbation the presynaptic neuron increased its release of

neurotransmitter so that the postsynaptic action of the neuro-

transmitter remained the same.(49) A similar result was found

with culturedXenopus neuromuscular junctions,(50) where the

excitability of the presynaptic neuron was enhanced by treat-

ments that blocked the postsynaptic actions of the motor

neuron.

Using activity to tune inhibitory synapses

Although there aremany studies on the implications of activity-

dependent regulation of the efficacy of excitatory synapses,

much lesswork has been done to askwhat rulesmight result in

the long-term control of inhibitory synapses. As many motor

networks function almost exclusively with inhibitory neurons, it

is equally important to develop possible learning rules for

tuning of inhibition. As a starting point, a three-cell network

of the crustacean pyloric rhythm was constructed. In this

model, the strengths of the synapses into a particular cell were

tuned using two rules, one a global measure of the neuron’s

total excitability similar in concept to synaptic scaling, and the

second a synapse specific rule that asked how effective each

presynaptic neuron was in influencing the postsynaptic cell’s

activity. These rules, which are highly consistent with the

biological data previously described,(51) allows the network

to self-assemble into a functional rhythmic circuit from

randomly assigned initial synaptic strengths (Fig. 6). Interest-

ingly, in these simulations, during the tuning process the

networks found many parameter regions (3,4,5) over which

almost indistinguishable network dynamics were seen. This

makes the point that similar network dynamics can result from

Figure 4. Homeostatic membrane conductance regulation in activity-deprived biological neurons.A:Spike trains in response to somatic

current injection in cortical pyramidal neurons after 7–9 days in control and in activity-deprived cultures in which firing was prevented with

TTX. The activity-deprived neurons have upregulated their excitability. B: Average current densities of activity-deprived neurons in % of

control values. The neurons responded to activity-deprivation by increasing their sodium currents and decreasing their outward currents

ITEA, IA, and IP while the calcium currents remained unchanged. Modified from Desai NS, Rutherford LC, Turrigiano GG. Nature Neurosci

1999;2:515–520with permissionofNaturePublishingGroup.C:Cartoonof theassumedconductancechanges in control (top) andactivity-

deprived neurons (bottom). While the conductances and activity pattern of the control neurons remain the same, the lower calcium

concentration in the activity-deprived neurons causes them to upregulate currents that increase their excitability. When the TTX-block is

removed, they respond to the same injection current with a higher firing rate than the control neurons.
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Figure 5. Activity-dependent regulation of synaptic strength

in biological neurons. A: Miniature excitatory post-synaptic

currents (mEPSCs) recorded from neocortical neurons after

48 hours in control cultures (top) or in cultures in which TTX

abolished firing (middle) or bicuculline blocked inhibitory

synaptic inputs (bottom). The average mEPSC waveforms

on the right were obtained from raw data as shown on the left.

B: Cumulative amplitude histograms for mEPSCs recorded

under each condition. Activity-deprivation shifts the distribution

to larger, reduced inhibition to smaller amplitudes. C: Average
mEPSC amplitudes and areas of neurons cultured in TTX or

bicuculline in % of control values. D: A possible mechanism

underlying the changes illustrated in A–C. The lower calcium

concentration caused by activity-deprivation (middle) leads

to an increase in synaptic strength by upregulating synaptic

receptor density. When the TTX is removed, the recorded

mEPSC is larger than in neurons grown under control condi-

tions (top). Conversely, the elevated calcium concentration

caused by the higher firing rate in bicuculline leads to a down-

regulation of synaptic receptor density (bottom). After 48 hours

in culture, the mEPSC is smaller than in control. Modified from

Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson

SB. Nature 1998;391:892–896 with permission of Nature

Publishing Group.

Figure 6. Self-assembly of a model neural network by

activity-dependent synapse modification. A: Voltage traces of

the AB/PD (top), LP (middle) and PY neurons (bottom) in a

model pyloric network (left) at different times during activity-

dependent tuning of the five inhibitory synapses that leads to

the establishment of a tri-phasic pyloric rhythm. B: Synaptic
conductances of all five synapses during the self-tuning. Note

that similar tri-phasic rhythms are produced at times 3, 4 and 5

in spite of different underlying synapse conductances.Modified

from Soto-Trevino C, Thoroughman KA, Marder E, Abbott LF.

Nat Neurosci 2001;4:297–303 with permission of Nature

Publishing Group. C: Cartoon snapshots of the LP neuron’s

activity and calcium concentration and the synapses it receives

from the AB/PD neuron and the PY neuron at different times

during the tuning process. Because the model illustrated here

uses both a global synapse modification rule that changes all

synapses onto a given cell jointly and a synapse-specific rule

that depends on the presynaptic and postsynaptic activity level,

the two synapses can vary independently, allowing the network

to explore many combinations of synapse strengths.
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a range of synaptic strengths, and that each synapse may not

need to be ‘‘perfectly’’ tuned for acceptable physiological

outputs.

Conclusions

The adult nervous system must continuously compensate for

ongoing processes of synthesis and turnover of the ion

channels that govern neuronal excitability and the receptors

that bind neurotransmitter. New biological data are consistent

with the interpretation that neurons use internal activity

sensors to tune the complement of membrane proteins that

govern signalling and excitability. Because neuronal and

network activity depend on a large number of interacting

nonlinear processes, there are multiple sets of membrane

conductances and synaptic strengths that can produce

neurons with similar firing properties and networks with similar

dynamics. This argues that individual neurons of the same

class may each have found an acceptable solution to a gene-

tically determined pattern of activity, but there may be consi-

derable variance in the underlying mechanisms governing

those activity states.
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