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Abstract. Temporally asymetric learning rules governing plastic changes in synaptic e�cacy have re-
cently been identi�ed in physiological studies. In these rules, the exact timing of pre- and postsynaptic
spikes is critical to the induced change of synaptic e�cacy. The temporal learning rules treated in this
paper are approximately antisymmetric; the synaptic e�cacy is enhanced if the postsynaptic spike fol-
lows the presynaptic spike by a few milliseconds, but the e�cacy is depressed if the postsynaptic spike
precedes the presynaptic spike. The learning dynamics of this rule are studied using a stochastic model
neuron receiving a set of serially delayed inputs. The average change of synaptic e�cacy due to the
temporally antisymmetric learning rule is shown to yield di�erential Hebbian learning. These results are
demonstrated with both mathematical analyses and computer simulations, and connections with theories
of classical conditioning are discussed.
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1. Introduction

One of the great mysteries facing neuroscience to-
day is how the nervous system learns causal rela-
tionships to form expectations of future events. A
likely physiological basis of temporal associations
would involve changes in the synaptic e�cacy of
connections among relevant neurons. Synaptic
change has been suggested as the mechanism un-
derlying the storage of memories in the nervous
system [Hebb, 1949], and the recall of relevant
temporal associations leads to biologically advan-
tageous behavior.

Consistent correlation between two events may
imply a causal connection, but more importantly,
the correlation acts as a predictor of the later
event based on the occurrence of the �rst. A neu-
ronal representation of such a correlation would be
when a neuron that is responding to a later event
\learns" to respond to the earlier event follow-
ing repeated pairing of the sequence. Eventually,
there will be a neuronal response to the �rst event
even in the absence of the second event. Contin-
ued repetition of the �rst event alone should re-
duce the neurons response by way of forgetting
the learned temporal association. Thus, the pre-
dictive relations between events separated in time
are maintained as long as they are reinforced.
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A simple model of linking events in time by
whole organisms is found in classical condition-
ing studies [Pavlov, 1927, Spence, 1956]. The re-
sponse of an animal to a conditioned stimulus, af-
ter pairing with a later unconditioned stimulus,
shows the ability to link the �rst stimulus to an
anticipated occurrence of the second stimulus. Ev-
idence of synaptic change in the amygdala has
recently been observed during fear conditioning
[McKernan and Shinnick-Gallagher, 1997, Rogan
et al., 1997]. However, our understanding of the
neurophysiological mechanisms underlying classi-
cal conditioning is as yet incomplete [Mauk, 1997].

Careful studies of associations between condi-
tioned stimulus and reward have revealed a con-
sistent pattern of conditioned behavior observed
in the whole organism [Klopf, l988, Sutton and
Barto, l981] that may be interpreted in terms
of synaptic change. A learning rule based on
the association of the rate-of-change of the pre-
and postsynaptic activity, instead of simply lev-
els of pre- and postsynaptic activity, yields results
that closely match the learning curves observed
behaviorally. This adjustment of synaptic e�-
cacy by an amount proportional to a time deriva-
tive is termed di�erentialHebbian learning [Klopf,
l986, Kosko, l986].

Some models have implemented di�erential
Hebbian learning using comparisons between a
time average of the neuronal activity and values
[Montague et al., l996]. Another class of mod-
els, called time-di�erence models, rely on a dis-
crete version of the di�erential Hebbian algorithm
by comparing neuronal activity between adjacent
time steps [Sutton and Barto, l981]. These mod-
els show promise in explaining many of the ex-
perimental classical conditioning paradigms and
require synaptic mechanisms that would be phys-
iologically similar to di�erential Hebbian models.

Models based on local rules of synaptic change
are theoretically advantageous because they de-
pend only upon the neuronal activity at the time

of association so that all the information needed
for synaptic change is available. Experimental in-
vestigations have con�rmed that local changes in
synaptic e�cacy can be dependent on the pre-
cise temporal relations of pre- and postsynap-
tic spikes [Bell et al., l997b, Levy and Steward,

1983, Markram et al., l997b, Zhang et al., 1998].
These timing relations yield a local temporal learn-

ing rule.

In these types of learning rules, the presence
and direction of synaptic change depends on the
precise timing of pre- and postsynaptic spikes dur-
ing the association period. The asymmetry is
thought to result from the dynamics of long-term
potentiation (or depression) mediated by gluta-
mate receptors of the NMDA-type [Debanne et al.,
l994, Gustafsson et al., 1987, Levy and Steward,
1983]. Because these receptor require the bind-
ing of glutamate in conjunction with postsynaptic
depolarization for the in
ux of Ca2+ ions, the as-
sociated changes in synaptic e�cacy occur if the
postsynaptic depolarization follows the beginning
of the epsp. Such asymetric learning rules has
been previously investigated theoretically in the
context of the hippocampal place cells [Abbott
and Blum, 1996] and for temporal pattern recog-
nition [Gerstner et al., l993]. Measurements of
the precise timing relationships have been recently
demonstrated physiologically in the mammalian
neocortex [Markram et al., l997b], in a cerebellum-
like structure of electric �sh [Bell et al., l997b],
in the developing Xenopus optic tectum [Zhang
et al., 1998], and in cultured hippocampal neu-
rons [Bi and ming Poo, 1998].

The present study focuses on synapses between
pyramidal cells of the rat neocortex that are en-
hanced or depressed depending on the timing of
pairing pre- and postsynaptic spikes [ Markram et
al. 1997b] [Bi and ming Poo, 1998]. Evidence of
postsynaptic spike propagation into the dendrites
[Stuart and Sakmann, 1994] is thought to explain
how postsynaptic activity is communicated to the
site of the synapse. If the postsynaptic spike is 10
msec before the arrival of the presynaptic spike,
then there is a depression of the synaptic e�-
cacy. If the postsynaptic spike follows the ar-
rival of the presynaptic spike by 10 msec, then
there is an enhancement of synaptic e�cacy (Fig.
3 in Markram et al. 1997b). No long term change
in synaptic e�cacy is observed at large time dif-
ferences or in controls where there is no postsy-
naptic activity. A more complete characterization
of an approximately antisymmetric learning rule
has been made in the optic tectum [Zhang et al.,
1998] and hippocampus [Bi and ming Poo, 1998].
In the following, we show that this learning rule,
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that is predominantly antisymmetric in time, im-
plies the presence of a di�erential Hebbian learn-
ing rule at synapses between pyramidal cells. In
addition, due to the associative depression, this
learning rule results in active forgetting of pre-
viously learned associations, an important aspect
that was missing in previous theoretical studies
[Abbott and Blum, 1996, Gerstner et al., l993].

Another type of asymmetric temporal learning
rule that leads to an entirely di�erent dynamics
has been found in a cerebellum-like structure (the
electrosensory lateral line lobe) in mormyrid elec-
tric �sh. Purkinje-like cells in this structure ex-
hibit two types of spikes: narrow, axonal spikes
and broad spikes that are presumed to propagate
into the dendrites [Bell et al., l997a]. Depres-
sion of the synapse between parallel �bers and
the dendritic tree is observed if a broad spike oc-
curs within a narrow window of time (up to 60
msec) following a parallel �ber spike. If the broad
spike is absent, or occurs outside the time win-
dow, the parallel �ber spike appears to produce
a non-associative enhancement of the synaptic ef-
�cacy [Bell et al., l997b]. The dynamics of this
type of temporal learning rule lead to the storage
of a negative image of sensory input and will be
investigated in a companion paper [Roberts and
Bell, 1999].

The purpose of the present article is to show
that di�erential Hebbian learning naturally arises
from the physiological learning rules of the type
found by Markram et al. (1997b) and Zhang et
al. (1998). The results show that these dynamics
of synaptic plasticity are due to the dominantly
antisymmetric structure of these temporal learn-
ing rules that generates opposite change in synap-
tic e�cacy depending on whether the postsynaptic
spike is in advance of, or follows, the presynaptic
spike.

In the next section, we introduce the basic for-
malism to be used in our analysis, introduce the
simulation method, and establish our the nota-
tion. The third section investigates the computa-
tional consequences of a speci�c temporal learn-
ing rule that has been measured in the neocortex
[Markram et al., l997b]. The mathematical for-
malism is applied to the example of a repeated
pairing of stimuli, and a simpli�ed model of clas-
sical conditioning is used to demonstrate the re-
sultant dynamics. We conclude with a brief dis-

cussion of the advantages and limitations of our
approach, and some of the biological consequences
of the results.

2. Mathematical Methods

The two mathematical approaches that will be
used to study synaptic plasticity in the neocortex
will be presented in this section. The �rst is an-
alytic and uses a stochastic version of the synap-
tic response model [Gerstner and van Hemmen,
l992] to reveal the origin of the di�erential learn-
ing rule. The second approach uses Monte Carlo
simulation methods to illustrate the dynamics of
synaptic change. The simulations complement the
formal analysis when results are di�cult to obtain
analytically and serve to check the analytic results
when the two methods overlap.
2.1 Stochastic Spike Response Models.

Markram et al. (1997b) showed that synaptic plas-
ticity in the neocortex is dependent on the rela-
tive timing of pre- and postsynaptic spikes. It is
therefore important to calculate the probability of
a postsynaptic spike as a function of time relative
to the presynaptic spike. A spike occurs when-
ever the membrane potential of a neuron exceeds
a threshold, V (t) > �. Because the membrane
potential is in
uenced by many random processes
beyond the control of the investigator, we assume
that the membrane potential is a random variable
with a normal (Gaussian) distribution function:

P (V � V0; �)dV =
1

�
p
2�

exp[� (V � V0)
2

2�2
]dV (1)

where V0 is the mean value of the membrane po-
tential and �2 is the variance. The probability,
fs(t), of a spike at time t is the probability that
the membrane potential is greater than the thresh-
old �,

fs(t) = fs(V0(t)) =

Z 1
�

P (V � V0(t); �)dV: (2)

This is the de�ning expression for the complemen-

tary error function that is sigmoidal in form and
has a value of 1/2 if V0(t) = �. The �ring rate
of the model neuron is computed by dividing the
probability by the refractory period. The absence
of a membrane potential reset after each spike sim-
pli�es the analysis, and we have checked in the
simulations that both model yield similar results.
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Our interest is in the response of the neuron
to a speci�c set of synaptic inputs that are ei-
ther correlated in time with a known stimulus
or in some way under the control of an exper-
imental investigator. All other synaptic inputs
are considered random and absorbed into a noise
term. The contribution of excitatory postsynap-
tic potentials (epsps) is summed for all correlated
synaptic inputs and weighted to compute the av-
erage membrane potential. The synaptic response
function [Gerstner and van Hemmen, l992] (or
waveform) of each epsp (shown in Fig. 1B) is de-
noted by Ei(t), where the index i identi�es di�er-
ent synapses with decay times that range from 20
msec to 80 msec [Markram et al., l997a]. These
functions are normalized so that their integrals
over time are unity,

R1
0 Ei(t) dt = 1, and when

multiplied by a weighting factor, wi(t), yield the
epsp.

In addition to the long term e�ects of pair-
ing pre- and postsynaptic spikes, there may be
a short term depression in these synapses that is
dependent on the recent activity of each synapse
[Abbott et al., 1997, Tsodyks and Markram,
1997, Zador and Dobrunz, 1997]. Although these
short-term e�ects are not addressed in the follow-
ing section, such depression can be represented by
another weighting of the synaptic response func-
tion in the form of a signal function [Kosko, 1992],
Si(t), that contains information about the e�ect
of prior presynaptic activity on synapse i at time
t. If one absorbs the background membrane po-
tential into the threshold, the average membrane
potential will only contain the contributions from
temporally correlated synaptic inputs,

V0(t) =
X
i

wi(t)

Z 1

0

Ei(t
0)Si(t � t0)dt0: (3)

Short-term e�ects are important to the dynamics
of biological neural networks and will be studied
using this formalism in future investigations. In
the following application, if the presynaptic spike
frequency is low enough, the signal function can be
represented by a sum of Dirac �-functions [Dirac,
1958], Si(t) =

P
m �(t�tm), where tm is a member

of the set of spike arrival times at synapse i, and
the sum is up to the longest time that yields a sig-
ni�cant contribution from the synaptic response

function to the average membrane potential in eq.
(3).
The e�ects of a temporal learning rule on a

longer time scale become evident by calculating
the average change in synaptic weights after the
pairing of pre- and postsynaptic activity. The
change in the weight of a synapse that receives a
presynaptic spike at time t, 4wn(t), is determined
by the time, tp, of a postsynaptic spike through
a learning function, L(t), describing the temporal
learning rule, 4wn(t) = L(tp � t) ( such as shown
in Fig. 1A). The average change in the synaptic
weight, < 4wn(t) >, is found by integrating over
the probability of a postsynaptic spike at time tp
[Abbott and Blum, 1996],

< 4wn(t) >=

Z T+

T
�

L(tp � t)fs(tp)dtp: (4)

The integration limits (T�; T+) are determined by
the speci�c application. Typically, the learning
function, L(t) is negligible everywhere except for
a small region near t = 0, so the integration lim-
its may follow accordingly. It should be stressed
here that the above expression is not deterministic
in the sense that speci�c spikes at time tp cause
a change in the weights at time t. On the con-
trary, the expression simply provides a method to
calculate the average change in the weights given
the spike probability function during the time that
the learning rule function L(tp� t) is non-zero. In
the following application to the synapses of the
neocortex, it will be shown how the form of the
temporal learning rule on the time scale of mil-
liseconds a�ects the functioning of neurons on the
scale of seconds.
2.2 Monte Carlo Simulations. The simu-

lations in the following section were designed to
estimate changes in the activity patterns after spe-
ci�c training procedures and to display the results.
The analytic results provide functional relation-
ships among variables of the neural dynamics, but
the simulations illustrate the synaptic change by
applying individual postsynaptic spikes using the
temporal learning rule during each training cycle.
Over time, the e�ects of individual spikes average
out and converge to the analytic results.
Custom simulation software has been written to

carry out the simulations. The random number
generator used a standard pseudo-random algo-
rithm considered to be su�cient for simulations
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of this scale [Binder, l979]. The error function
of eq.(2) was estimated using a linear segment in
the neighborhood of V0(t) = � with a slope deter-
mined by the variance of the spike density func-
tion.

The sequence of operations that the computer
program executed was as follows: First the modu-
lation of the membrane potential due to the synap-
tic input throughout a training cycle was com-
puted. Next, a postsynaptic spike was assigned
to each time step in accordance with the spike
probability function. Finally, the synaptic weights
were updated by scanning the region around a
speci�c temporally correlated synaptic input for
a postsynaptic spike within the range of the tem-
poral learning rule. If a spike was found, then
the synaptic weight was depressed or enhanced by
an amount dictated by the temporal learning rule
(see Fig. 1). The sequence was then iterated until
terminated by the investigator. Results were also
obtained where the average membrane potential
was reset after each spike.

3. Application: Neocortical temporal

learning rule

The classical conditioning protocol consists of a
repeated conditioned stimulus followed by the pre-
sentation of an unconditioned stimulus or reward.
To formalize this protocol, the time component
of the previous section will be split into two sepa-
rate components, (x; t), where x is the time within
each stimulus-reward cycle, and t represents the
number of trials. This separation is appropriate
because the measurable changes in behavior oc-
cur during the course of several training cycles (t),
whereas the neuronal activity modulation that is
responsible for synaptic change is greatest within
each cycle (x).

In the analyses and simulationspresented in this
section, it is assumed that there is a series of se-
quentially delayed impulses arriving at separate
synapses (Fig. 2) that are each temporally corre-
lated with the conditioned stimulus. This assump-
tion has been used previously to describe the neu-
ronal models of classical conditioning [Buonomano
and Mauk, l994, Gluck and Thompson, l990,Mon-
tague et al., l996, Moore et al., 1989] and is re-
ferred to as a complete serial-compound stimu-

lus [Sutton and Barto, 1990] or a spectral timing
model [Grossberg and Schmajuk, 1989]. Under
this serial delay assumption, the synaptic weights
are labeled by their location in time following the
onset of a stimulus, x, and change their values
as several trials progress. Thus we denote the
weights by w(x; t). The underlying speculation in
the serial delay assumption is that there is some
mechanism that delays neuronal responses to a
speci�c stimulus for a long enough time to link
the stimulus to the time of the reward. To avoid
short term depression e�ects, it is further assumed
in this section that there is only one epsp from
each synapse during the stimulus cycle.

In the next subsection we prove our central re-
sult; that the combination of an antisymmetric
learning rule with a series of delayed synaptic in-
puts implies a di�erential Hebbian rule. Although
the global learning dynamics of the model can be
deduced directly from the di�erential Hebbian re-
sult, in the following subsection we use stability
analysis to deduce the dynamics directly from the
temporal learning rule L(x; t). It will be shown
that the neocortical synaptic learning rule results
in travellingwaves of neuronal activity during con-
ditioning that propagate from the time of a later
stimulus to the onset of an earlier, associated stim-
ulus. The third subsection demonstrates the trav-
elling wave in a computer simulation.

3.1 Di�erential Hebbian learning. The
temporal learning rule that will be used is based
on the results reported by Markram et al. (1997b)
and Zhang et al. (1998). The data presented
in �rst article do not fully characterize the de-
tails of the temporal learning rule, but give three
points of the learning rule: enhancement of the
synaptic e�cacy if the epsp begins 10 msec be-
fore the postsynaptic spike, depression if the epsp
begins 10 msec after the postsynaptic spike, and
no change if the epsp and the postsynaptic spike
were 100 msec apart. These data suggest that the
model function be antisymmetric about the origin
(L(�x) = �L(x)) and vanish for large positive
and negative values of its argument. This model
learning rule is further validated by the more com-
plete results of the second article [Zhang et al.,
1998] which reveal a learning rule that is nearly
antisymmetric in time and vanishes for large �x.
The �rst derivative of the Gaussian distribution

function �lls the necessary requirements and has
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the added advantage that the integral is normal-
ized so as to separate the width, �L, from the
learning rate, �. Thus, the learning rule is mod-
eled as:

L(x) = ��P 0(x; �L) = �x

�3L
p
2�

exp[� x2

2�2L
]: (1)

The extrema of L(x) are at x = ��L. The value
used in the following, �L = 14 msec, is consistent
with the data reported in [Markram et al., l997b].
We are now in the position to solve for the av-

erage change in synaptic e�cacy, eq.(4), during
each stimulus-reward cycle. The limits of integra-
tion will be taken to in�nity because the value of
L(x) becomes indistinguishable from the noise for
large �x when � is assigned physiologically realis-
tic values. In the continuous limit, the spike prob-
ability function is expanded about z = x�xp = 0
to yield,

< 4w(x; t) > �
Z 1

�1

L(z)[fs(x; t) + z
@

@x
fs(x; t)

+
z2

2!

@2

@x2
fs(x; t)]dz

=
X
m

Lm
@m

@xm
fs(x; t); (2)

where the moments of the temporal learning rule
are de�ned by

Lm =
1

m!

Z 1
�1

zmL(z)dz: (3)

For an antisymmetric temporal learning rule such
as that measured in [Markram et al., l997b] and
parametrized by eq.(1), L2m = 0. The rule given
in eq.(1) yields L1 = �, and the higher order mo-
ments diminish rapidly.
The main result of this article is that the aver-

age change in synaptic e�cacy is proportional to
the rate-of-change of the postsynaptic spike prob-
ability,

< 4w(x; t) >� �
@

@x
fs(x; t): (4)

The reason for the importance of this result is that
it represents the macroscopic results (on the time
scale of several conditioning cycles) that follow
from the microscopic temporal rule (on the time
scale of the interspike spike interval). Again we
must emphasize that the quantities of this deriva-

tion are averaged changes that depend on the
functional form of probability functions. This re-
sult does not represent the precise synaptic weight
changes the occur following each spike. That
change is formalized by eq.(1), or an approxima-
tion thereof, and is sensitive only to postsynaptic
events within about 40 msec of the presynsptic
spike. However, over the course of several stimu-
lus cycles, or averaged over several similar neural
systems, the weight changes at each synapse tend
to follow the derivative of the postsynaptic spike
activity at the point in time when its epsp begins.

The dynamics of this learning rule follow di-
rectly form the average synaptic changes given by
eq.(4). Suppose two stimuli that converge on the
same cortical neuron are paired as follows: The
�rst is distributed in a serial delay with plastic
synaptic connections to the neuron that follow an
(approximately) antisymmetric learning rule. The
second stimulus arrives after the �rst, and dur-
ing the delayed inputs. If the second stimulus
is strong enough to increase the membrane po-
tential above threshold, then the spike probabil-
ity will be increased and have an increasing slope
immediately prior to the second stimulus. The
synapses with epsps that arrive during this period
of increasing slope will, on the average, increase
their e�cacy and thus contribute to an increasing
spike probability immediately prior to their arrival
time. Eventually, after many pairings of the two
stimuli, the increasing e�cacy of later synapses
contribute to the increasing e�cacy of the earlier
synapses until the e�cacy of the �rst epsp follow-
ing the �rst stimulus is saturated. The net e�ect
is a change in latency of the neuron's response so
that at the beginning of the pairing, it responded
only to the second stimulus, but after many cycles
the neuron responds with a high spike probability
to the �rst stimulus.

As the cortical neuron learns to respond to
the �rst stimulus, the latency decreases. In the
components chosen for our representation of the
stimulus-reward cycle, (x; t), the decreasing la-
tency will appear as a travelling wave of spike ac-
tivity from the time of the second stimulus to the
�rst. In the next subsection we apply stability
analysis to the averaged e�ects of the antisym-
mectric learning rule on synaptic weights to prove
that the travelling wave exists and to compute the
wave's velocity. These dynamics are then demon-
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strated in the following subsection with computer
simulations.
3.2 Instabilities of the temporal learning

rule. As a pyramidal cell alters its response to a
sensory stimulus under the in
uence of a tempo-
ral learning rule, the pattern of adaptive responses
will be determined by the form of the rule. To
characterize the form of adaptive responses to sen-
sory input, we further analyze the equation for the
average change in synaptic weights (eq.4) by inves-
tigating solutions of the pattern of weight values
for the synapses.
Oscillatory instabilities often arise in complex

systems as described by this model. Therefore,
we seek solutions of the form

< w(x; t) >/ eikxe�t; (5)

where � is a growth factor parametrizing the emer-
gence of a pattern during the course of many trials
and k is the wave number [Murray, 1989]. The re-
lation between the growth of oscillations and their
wave number can be found by substituting this so-
lution into the formal continuous limit (4t ! dt,
4w ! dw=dt) of the weight evolution formula
(eq.4). The validity of this limit will be tested
in the simulations of the next subsection. It is
reasonable to assume here that the neuron spends
most of the time near its threshold so that a piece-
wise linear approximation of fs(x) is appropriate;

d

dt
< w(x; t) >=

1p
2��

Z 1

�1

dx0L(x0 � x)

�
Z 1
0

dx00 < w(x00; t) > E(x0 � x00): (6)

Using the substitutions, y = x0 � x00 and z = x�
x00, the expression for the growth factor is found
to be

� =
1p
2��

Z 1
�1

dze�ikzL(y � z)

Z 1

0

dyE(y): (7)

The epsp waveformwill be approximated with the
function E(y) = �2P 0(y; �E) for y > 0. The inte-
grals can be solved to yield

� =
�p
2��

f�L�Ek2e� 1
2
(�2
L
+�2

E
)k2

+i�Lk

r
2

�
(1� r(�Ek))e

� 1
2
�
2
L
k
2g: (8)

where,

r(�Ek) = �Eke
� 1
2
(�Ek)

2

Z �Ek

0

e
1
2
y2dy: (9)

The appearance of a complex growth factor im-
plies the existence of traveling waves with a veloc-
ity, c = �(��L=��)(1 � r(�Ek)) exp[�(�Ek)2=2].
The fact that the velocity of traveling wave so-
lution is negative implies that any disturbance of
the system, such as a perturbation of the mem-
brane potential, will propagate by way of changes
in synaptic weights to an earlier point in time. As
will be demonstrated in the next subsection, this
propagation of a signal is how the di�erential Heb-
bian rule links events that are separated in time
and will be demonstrated in the simulations of the
next section.
The real part of the growth factor in eq.(8)

identi�es the most unstable wave number that
is likely to develop into oscillations during the
course of several stimulus cycles. By analyzing
the dispersion relations [Murray, 1989] of this sys-
tem we �nd the unstable wave number to be
k̂ =

p
2=(�2L + �2E). In the neocortex, oscillatory

instabilities will manifest as high frequency bursts
of action potentials by pyramidal neurons. To de-
termine the frequency of these oscillations, we set
the time course of the epsp to be consistent with
physiological data found in Markram el al. (1997a)
so that �E = 7 msec. A graph of the oscillation
frequency as a function of the time course of the
temporal learning rule is shown in Fig. 3. It is
interesting to note that the range of frequencies
includes the naturally occurring oscillations that
are associated with synchrony among cortical neu-
rons [Singer, 1993].
3.3 Simulating classical conditioning.

These simulations demonstrate the change in the
response of a neuron to a sensory stimulus during
conditioning. The reward is modeled as a depolar-
izing increase in the membrane potential so that
postsynaptic spikes a�ect the synaptic e�cacy if
there is presynaptic activity. The reward stimulus
follows the stimulus by about 1 sec. During the
course of conditioning, the response of the neuron
to the conditioned stimulus is seen to increase. In
addition, the time course of forgetting is explored
when the reward is silenced.
The serial delay assumption is used in the fol-

lowing simulations to divide the time following
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the conditioned stimulus into equal segments, 4x.
The signal function (eq. 3) now takes the form,
Sn(x) = fpre(n4x)�(x � n4x), where fpre(n4x)
is the probability of a presynaptic spike arriving
at time xn = n4x following the conditioned stim-
ulus. At each time step, the arriving signal is
correlated with the stimulus, and all uncorrelated
synaptic inputs are absorbed into the background
noise. These expressions yield the discrete form of
the average membrane potential,

V0 (xn; tm) =
2X

i=1

X
xn�xs2IE

wi(xs; tm)Ei(xn � xs):(10)

The sum over di�erent synaptic response func-
tions indexed by i in eq.(10) refer to the synapses
with the same spike arrival time. We have ob-
tained similar results when only one synapse is
assigned to each time step. The second sum is
over the range IE where E(xn) is nonvanishing.
The synaptic weights are restricted to the range
1 � wi(xn; tm) � 60, and each simulation begins
with the initial conditions wi(xn; 0) = 5 for all xn.

The presynaptic neurons are assumed to have
a speci�ed probability of �ring so that the longer
latency neurons diminish in their �ring probabil-
ity in keeping with expected physiological con-
straints. Thus, there is a probability pro�le that
determines the probable activity at each synapse
(Fig. 4A). Since a synapse must be contributing
an epsp to the membrane potential in order to
change its synaptic weight, the probability pro�le
in
uences the rate of plasticity at each synapse.
In fact, the left-moving velocity of the traveling
waves, c, analyzed in the previous subsection will
be diminished proportionally to the �ring proba-
bility of the presynaptic neurons.

In the simulation, the membrane potentials
and thresholds are normalized to a percentage
of the maximum membrane potential, Vmax =P

i

P
nwmaxEi(xn) + WRRmax. We have used

Rmax = 30 as the maximum value of the con-
tribution of the reward to the membrane poten-
tial, WR = 30 as the weight of the reward input,
and wmax = 60. The postsynaptic spike probabil-
ity is calculated using a piece-wise linearized ap-
proximation of the complementary error function

(eq. 2) as shown in Fig. 4B for the values used
in the conditioned simulation where � = 20% and
� = 0:08.

For technical reasons, it was convenient to nor-
malize the temporal learning rule as L(xn) =
�10��LP 0(xn; �L) and similarly the epsp wave-
form as E(xn) = �20�EP 0(xn; �E). In keeping
with the available physiological data [Markram
et al., l997a, Markram et al., l997b], we have set
�E = 7 msec and �L = 14 msec. A refractory pe-
riod of one time-step (7 msec) was included in the
simulation, but did not noticeably in
uence the
results. The learning rate was set at � = 3.

A typical conditioning simulation is shown in
Fig. 5. The reward input is given between 840 -
910 msec following the beginning of the stimulus
in the form of a sharp, triangular peak in mem-
brane potential. The grey-scale background de-
picts the value of the membrane potential where
the darker shade represents a higher potential.
The number of spikes per stimulus cycle is given
as a function of the number of trials to show the
increase in the neuron's response to the stimulus
during pairing with the reward input. The postsy-
naptic spike activity follows closely to the darker
regions of the membrane potential.

An important feature of the learned response is
that the beginning of the spike burst progresses
earlier in time in each successive trial. This be-
havior is the characteristic large-scale result of
the antisymmetric learning rule. In the �rst trial
the neuron responds to the reward alone, but in
time the neuron gives a long burst of action po-
tentials in response to the conditioned stimulus.
The neuron's response follows an S-shaped acqui-
sition curve during the training session in agree-
ment with previously reported results from whole-
animal data [Klopf, l988, Spence, 1956]. The two
key aspects of the model for reproducing this ac-
quisition curve are (1) the temporal learning rule
[Markram et al., l997b] and (2) the serial delay
assumption. The variations of the exact shape of
the probability pro�le (Fig. 4) do not change the
basic form of acquisition curve, and the model is
quite robust to changes in the threshold and the
level of noise.

If the stimulus cycle is continued after the re-
ward input is withheld, then the response of the
neuron to the conditioned stimulus begins to fade.
The time course of conditioning, followed by for-
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getting, is shown in Fig. 6 for a typical simula-
tion run. The beginning of the burst of action
potentials is coincident with the early presynap-
tic inputs after about 75 trails and remains there
throughout the forgetting phase. The reward in-
put is withheld after the 100th trial, and the decay
of the neuron's response is slow while the length of
the burst slowly shortens. Eventually the synap-
tic weights are reduced by the temporal learning
rule to their lowest level and training to another
reward input can commence as before.

4. Discussion

The analyses and simulations presented in this ar-
ticle show that the temporal learning rule reported
by Markram et al. (1997b), in combination with a
speci�c network architecture, leads to a change in
neuronal responses that link initial (serial delayed)
stimuli with a latter (unconditioned) stimuli. An
essential aspect of the network is the serial delay
assumption that distributes the input of the con-
ditioned stimulus in a series of separate epsps that
are precisely correlated in time with the stimulus.
If a later input within the range of the serial delay
series increases the neuron's activity, then the neu-
ron learns to increases its activity in response to
the conditioned stimulus through synaptic change.
During the course of several trials, the beginning
of the burst propagates foward in time from the
later input until it is coincident with the onset of
the conditioned stimulus.

The conclusions that follow from our results
provide an indirect approach to test the serial de-
lay assumption experimentally. One possible in

vivo test would be to record from a region of the
somatosensory cortex in which there are neurons
with receptive �elds to a speci�c somatosensory
stimulus. Axon collaterals of responsive neurons
will presumably make synaptic contact with den-
drites of other pyramidal cells, though the con-
nections may be too feeble to induce an action
potential in the postsynaptic cells (see Fig. 3). If a
neuron is found that does not respond to the same
stimulus, then pairing the somatosensory stimulus
with a delayed depolarization current would pro-
duce results similar to the simulations presented
above if the serial delay assumption is valid.

The connection between the antisymmetric
learning rule and di�erential Hebbian learning
(Eq.4 suggests a synaptic mechanism for the clas-
sical conditioning models discussed in the Intro-
duction. Since di�erential Hebbian learning is
an approximation to the time-di�erence model of
classical conditioning [Sutton and Barto, l981],
then it is likely that antisymmetric temporal
learning rules give the brain the average behav-
ior that is consistent with this model.

Two relevant aspects of cortical anatomy and
physiology have not been taken into account in
this study. First, inhibitory interneurons that are
found in this part of the brain have been left out of
our model primarily because the temporal learn-
ing rule of the associated synapses have not yet
been characterized. The inclusion of these in-
hibitory inputs would not be expected to change
the results much unless their temporal learning
rule di�ers greatly. Judging by the parallel form
of the temporal learning rule of inhibitory inputs
suggested by studies in the electrolateral line lobe
of mormyrid electric �sh (C. Bell, personal com-
munication), one expects the learning rule to be
similar in the neocortex as well. In this case, plas-
ticity of inhibitory inputs would add more of the
details found in classical conditioning experiments
carried out with whole animals.

The second physiological detail to be excluded
in our model that may play an important role
in the conclusions that can be drawn from the
results is the short term depression found at
these synapses [Abbott et al., 1997, Tsodyks and
Markram, 1997]. The model studied in this ar-
ticle was designed to avoid in
uences of this ef-
fect because it is as yet unclear what in
uence the
short term reduction of the synaptic e�cacy has
on the temporal learning rule. However, short-
term depression is likely to increase when synaptic
strength increases [Markram and Tsodyks, l996].
Furthermore, it is known that short term de-
pression of the form observed in the neocortex
makes the postsynaptic response more sensitive to
changes in the presynaptic spike frequency than to
the frequency itself [Abbott et al., 1997, Tsodyks
and Markram, 1997, Zador and Dobrunz, 1997].
If the sensitivity to the derivative of the presy-
naptic spike activity is raised, the behavior comes
to resemble the full, i.e. pre- and postsynaptic,
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di�erential Hebbian learning rule that has been
studied in the past [Klopf, l986, Kosko, l986].

In the present study, the dynamics of synaptic
change for the learning rule described in Markram
et al. (1997b) are able to link any two excitatory
events that can be traversed by a serial delay in-
put. However, this model lacks a mechanism to
encode the delay from the �rst event to the second;
if a neuron responds to the second event, then fol-
lowing training, the neuron will begin its response
immediately following the �rst event. The tim-
ing of conditioned responses may require the in-

uence of another anatomical structure external
to the neocortex. Studies of classical conditioning
that involve lesions of the cerebellum suggest that
this structure plays an important role in determin-
ing the timing of conditioned responses [Perrett
et al., l993]. In addition, the cerebellum appears
to possess a very di�erent type of temporal learn-
ing rule based on associative long-term depression
that would lead to di�erent dynamics of synaptic
change. It is possible that the association between
events is stored in the cerebral cortex, but the rel-
ative timing is encoded by the cerebellum.

Our analytical results provide a deeper under-
standing of previous theoretical studies on asym-
metric temporal learning rules [Abbott and Blum,
1996, Gerstner et al., l993]. These studies found
that neural networks with a learning rule inspired
by NMDA-mediated long-term potentiation are
e�cient for storing temporal sequences [Gerstner
et al., l993] and are predictive of input somewhat
ahead of the input's timing in the original training
sequence [Abbott and Blum, 1996]. The simplic-
ity of the present model allows one to describe a
sequence in its simplest form: two events sepa-
rated in time. The prediction of future elements
in a sequence arises from temporal instabilities in
the dynamical equations of synaptic change (eq.6).
Information about future events tends to propa-
gate backwards in time so that synaptic e�cacy
is increased in anticipation of later stimuli.

In [Abbott and Blum, 1996], important factors
for the shift in the coding vectors were related to
the parameters of the learning rule's asymmetry
and the width and overlap of each neuron's tun-
ing curve. From the point of view of the present
analysis, each neuron will learn to predict future
events depending upon the distribution of incom-

ing signals from other neurons, a distribution that
is functionally related to the tuning curves and the
overall input sequence. In addition, the present
model suggests the time course of active forgetting
that one would expect in these more complex net-
work model. As demonstrated in Fig. 6, learning
takes place much faster than the system forgets
previously learned sequences.
The formalismpresented here has been designed

to include further details of synaptic dynamics as
results become available. The stochastic methods
that have been used show how dynamics that de-
pend on the exact timing of events on the scale of
milliseconds can average out to produce nontrivial
behavior on the time scale of seconds. The anti-
symmetric temporal strucutre of the learning rule
characterized in the neocortex [Markram et al.,
l997b] yields a form of di�erential Hebbian learn-
ing that gives a mechanistic prediction for princi-
ples of classical conditioning.
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Fig. 1. Learning Rule. (A) The learning rule used in this study that is consistent with data presented in (Markram et al.
1997b). (B) The waveform of the response kernel similar to that found in (Markram et al. 1997a).
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ξ(x,t)

R(x)

Spike output
Fig. 2. The Model Neuron. A series of presynaptic neurons make excitatory synaptic contact with the model neuron so
that the arrival time, xn, of each epsp is consistently correlated with a conditioned stimulus during each cycle. t. These
epsps are variable and change according to the learning rule described in the text. The model neuron is under the in
uence
of noise (�(x;t)) including synaptic inputs that are not correlated with the conditioned stimulus, and internally induced
variations in membrane potential. The unconditioned stimulus, or reward, R(x), is introduced in the form of a small
depolarizing input.
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Fig. 4. Simulation functions. (A) Presynaptic spike probability pro�le as a function of arrival time at a synapse. (B)
Postsynaptic spike probability approximated by a piece-wise linear function of the membrane potential. The potential is
normalized as a percentage of the maximal calculated membrane potential.
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Fig. 5. Classical Conditioning. The trials run as a raster plot with the trial number across the bottom. The scale on the
left gives the time following the stimulus onset and relates to the grey scale representation of the membrane potential in a
typical simulation run. The darkness of the shade represents the magnitude of the membrane potential at each time step
following the stimulus onset. The �rst trial begins with a reward input at xn = 850 that brie
y increases the membrane
potential. As the trials progress, synaptic plasticity causes the front of the increase in membrane potential to travel forward
in time until it reaches the onset of the stimulus input. This is the \travelling wave" discussed in the text. The S-shaped
graph denotes the number of postsynaptic spikes during each stimulus and measures the response of the neuron to the
stimulus cycle by the scale on the right. The smooth curve is the average spike number per stimulus cycle.
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phase, the length of the burst decreases as the temporal learning rule reduces the weight of synapses with signals arriving
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