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Roberts, Patrick D. Modeling inhibitory plasticity in the electrosen-
sory system of mormyrid electric fish.J Neurophysiol84: 2035–2047,
2000. Mathematical analyses and computer simulations are used to
study the adaptation induced by plasticity at inhibitory synapses in a
cerebellum-like structure, the electrosensory lateral line lobe (ELL) of
mormyrid electric fish. Single-cell model results are compared with
results obtained at the system level in vivo. The model of system level
adaptation uses detailed temporal learning rules of plasticity at exci-
tatory and inhibitory synapses onto Purkinje-like neurons. Synaptic
plasticity in this system depends on the time difference between pre-
and postsynaptic spikes. Adaptation is measured by the ability of the
system to cancel a reafferent electrosensory signal by generating a
negative image of the predicted signal. The effects of plasticity are
tested for the relative temporal correlation between the inhibitory
input and the sensory input, the gain of the sensory signal, and the
presence of shunting inhibition. The model suggests that the presence
of plasticity at inhibitory synapses improves the function of the
system if the inhibitory inputs are temporally correlated with a pre-
dictable electrosensory signal. The functional improvements include
an increased range of adaptability and a higher rate of system level
adaptation. However, the presence of shunting inhibition has little
effect on the dynamics of the model. The model quantifies the rate of
system level adaptation and the accuracy of the negative image. We
find that adaptation proceeds at a rate comparable to results obtained
from experiments in vivo if the inhibitory input is correlated with
electrosensory input. The mathematical analysis and computer simu-
lations support the hypothesis that inhibitory synapses in the molec-
ular layer of the ELL change their efficacy in response to the timing
of pre- and postsynaptic spikes. Predictions include the rate of adap-
tation to sensory stimuli, the range of stimulus amplitudes for which
adaptation is possible, the stability of stored negative images, and the
timing relations of a temporal learning rule governing the inhibitory
synapses. These results may be generalized to other adaptive systems
in which plasticity at inhibitory synapses obeys similar learning rules.

I N T R O D U C T I O N

The importance of plasticity at inhibitory synapses has only
recently been recognized. The restructuring of the cortical
somatosensory maps following lesions or changes in use, for
example, has been found to be dependent on the presence of
GABA activity. This observation lead to the conclusion that
the restructuring involves changes in the strength of inhibitory
synaptic input (Jacobs and Donoghue 1991; Lane et al. 1997;
Mower et al. 1984). Similar results have been found in the
inferior colliculus of the barn owl where the sensory maps
integrating auditory and visual stimuli converge (Zheng and

Knudsen 1999). These studies suggest that the inhibitory path-
ways are an important component to adaptation of neuronal
responses to changing sensory conditions.

It is not always clear in these system level studies whether
the plasticity occurs at excitatory synapses onto inhibitory
interneurons or at the inhibitory synapses themselves. Plastic-
ity localized to inhibitory synapses themselves has been dem-
onstrated, however, in a few different systems including inhib-
itory synapses in the visual cortex (Komatsu and Iwakiri 1993),
inhibitory neurons on Mautner cells (Korn et al. 1992), and
inhibitory neurons onto Purkinje cells in the cerebellum (Kano
et al. 1992). Plasticity at such inhibitory synapses is likely to be
important in central processing of sensory information as well
as of other types of information. But few published modeling
studies of inhibitory plasticity (Marshall 1990; Nelson and
Paulin 1995; Sirosh and Miikkulainen 1994) have elucidated
the potential roles of plasticity at inhibitory synapses. Further-
more, the interactions between inhibitory plasticity and plas-
ticity at excitatory synapses are only poorly understood.

The present study uses techniques of mathematical and
computer modeling to examine the possible roles and contri-
butions of plasticity at inhibitory synapses in the electrosensory
lateral line lobe (ELL) of mormyrid electric fish. This structure,
and other cerebellum-like sensory structures in electroreceptive
fish, have been shown to be adaptive sensory processors that
subtract out predictable features of the sensory inflow follow-
ing a period of association between centrally originating pre-
dictive signals and particular patterns of sensory input (Bell et
al. 1997a). Synaptic plasticity at excitatory synapses has been
demonstrated experimentally in the ELL (Bastian 1998; Bell et
al. 1997c; Bodznick et al. 1999). A previous modeling study
has shown how this cellular level plasticity can yield the
system level adaptive properties of the ELL (Roberts and Bell
2000). The ELL is rich in inhibitory neurons and inhibitory
synapses. Although plasticity at these inhibitory synapses has
not yet been demonstrated, an adaptive system level function
for the structure as a whole, the well demonstrated plasticity at
excitatory synapses, and the presence of extensive inhibitory
interactions within the ELL suggest that this region is a good
candidate to examine the potential contributions of inhibitory
synaptic plasticity.
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Mormyrid electrosensory system

Mormyrid electric fish have an electric organ in their tail that
generates a brief pulse of electric current, an electric organ
discharge (EOD). The EOD generates electric field pulses in
the near vicinity of the fish in response to a centrally originat-
ing motor command. The fish can navigate without vision by
detecting distortions caused by external objects in its self-
generated electric field (Bastian 1986).

Mormyrid fish have three classes of electroreceptors that are
used for three different purposes: mormyromasts, knollenor-
gans, and ampullary receptors. Mormyromasts are used for
active electrolocation, knollenorgans are used to sense the
EODs of other electric fish in electro-communication, and
ampullary receptors are used to sense the low-frequency ex-
ternal fields that all animals, electric and nonelectric, generate
in the water.

Primary afferent fibers from mormyromast and ampullary
electroreceptors terminate in separate regions of the cortex of
the electrosensory lateral line lobe. The ELL is a laminar
structure, and neurons of interest for this study, the medium
ganglion (MG) cells, have their cell bodies in the ganglion cell
layer (see Fig. 1). These neurons have a large dendritic tree of
apical dendrites that reach into the molecular layer. There they
receive synaptic contact from excitatory parallel fibers and
inhibitory interneurons, the largest population of which are
referred to as stellate cells (Grant et al. 1996; Meek et al.
1996). This study is restricted to the region of the ELL cortex
that receives ampullary receptor input.

Recordings from the cell bodies of MG cells reveal two
types of spikes; anarrow, presumably axonal, spike is evoked
by moderate depolarization, and a large,broad spikeis evoked
at stronger depolarizations. Field recordings suggest that the
broad spikes propagate into the apical dendrites of the molec-
ular layer (Grant et al. 1998).

The motor command that initiates an EOD originates in the
command nucleus and traverses the spinal cord to the electric
organ. Simultaneously, a corollary discharge signal projects to
the ELL to intersect with the afferent electrosensory informa-
tion from the receptors (Bell 1982; Bell et al. 1983). These

signals converge on medium ganglion cells, where basilar
dendrites receive the afferent inputs via interneurons in the
granular layer, and the apical dendrites receive corollary dis-
charge inputs via the parallel fibers and stellate cells in the
molecular layer (Bell et al. 1992).

Mormyrid electric fish can sense the subtle external electric
fields of interest over the background of its own electric dis-
charge. Since the fish generates the signal, it might be advan-
tageous to develop an adaptive filtering mechanism that elim-
inates the predicted electrosensory image to emphasize subtle
novelties in the environment.

The MG cell responses adapt to eliminate the predicted
electrosensory image within the sensory signal (Bell 1982).
Recordings near fibers known to excite granule cells that
project into the molecular layer as parallel fibers suggest that
their responses to the corollary discharge are not simultaneous,
but are distributed in time following the command signal (Bell
et al. 1992). Corollary discharge timing information of the
electric discharge arrives through parallel fibers, so a likely
candidate for adaptation is the synapse between the parallel
fibers and the apical dendrites.

The synaptic efficacy of the parallel fibers onto the MG cells
has been shown to change depending on the relative timing of
the presynaptic volley evoked excitatory postsynaptic potential
(EPSP) and the postsynaptic broad spike (Bell et al. 1997c).
The synaptic efficacy is depressed following a pairing period in
which the postsynaptic spike follows the beginning of the
EPSP within a narrow time window of about 50 ms. This effect
is referred to asassociativedepression. If the postsynaptic
broad spike occurs at any other delay, then the synaptic effi-
cacy is enhanced. This increase does not depend on the occur-
rence of the postsynaptic spike and is referred to asnonasso-
ciative enhancement. Modeling studies have shown (Roberts
and Bell 2000) that the exact form of the learning rule is critical
for the system level adaptive function of the ELL’s ampullary
region. If the experimentally established learning rule is used
in the model, then the parallel fiber inputs adapt to generate a
negative imageof the previously paired sensory input. Adding
this negative predictable component to the actual input elimi-
nates modulation of the MG cell responses to predictable
electrosensory signals. If other learning rules with other forms
of temporal dependence on the relative timing of pre- and
postsynaptic events, are used, then the model demonstrates that
the negative image is not as faithful a copy of the original
sensory input because the learning is dynamically unstable
(Roberts and Bell 2000).

A similar adaptive filter system has been found in another
electrosensory system. In the gymnotid ELL, fibers carrying
proprioceptive information adjust their synapses in a way that
can cancel the predictable changes in electroreceptor signal
intensity due to bending of the fish’s body (Bastian 1995). In
addition, experiments on synaptic plasticity (Bastian 1998)
suggest that some of the adaptation is caused by plasticity at
inhibitory synapses.

Slice experiments in the mormyrid ELL have suggested but
not yet demonstrated plasticity at inhibitory synapses (Bell et
al. 1997b). The associative depression of the EPSP evoked by
a parallel fiber stimulus appeared to be accompanied by an
increase in the inhibitory postsynaptic potential (IPSP) evoked
by the same stimulus, and the nonassociative increase in EPSP
size appeared to be accompanied by a decrease in the IPSP

FIG. 1. Neural organization. Cellular organization of the electrosensory
lateral line lobe (ELL) is shown. The medium ganglion (MG) cells, with cell
bodies in the ganglion cell layer, have apical dendrites that reach into the
molecular layer and basilar dendrites that invade the granular layer. Parallel
fibers in the molecular layer respond to corollary discharge signals, proprio-
ceptive signals, and signals from other sensory modalities. The parallel fibers
have excitatory synapse onto MG cells and stellate cells. The stellate cells are
inhibitory and synapse onto MG cells. Electrosensory information from pri-
mary afferents reaches the MG cells through interneurons in the granule layer.
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(Fig. 2A). These changes appear to be due to plasticity at
inhibitory synapses, but could also reflect an IPSP of unchang-
ing size that is masked or unmasked by accompanying changes
in the EPSP.

The present study explores the hypothesis that plasticity is
indeed present at inhibitory synapses in the ELL and examines
the consequences of such plasticity. The learning rule that is
assumed to control inhibitory plasticity follows from the hy-
pothesis that pairing delays between pre- and postsynaptic
spikes that cause the EPSP to decrease cause the IPSP to
increase and pairings at other delays that cause the EPSP to
increase cause the IPSP to decrease. The main feature of this
form of plasticity is that it follows the same timing as the
learning rules for excitatory synapses, but in the opposite
direction (see Fig. 2B).

M E T H O D S

Stochastic model neuron

The model of the MG cell is constructed to represent the simplest
observable dynamics in response to externally applied synaptic input.
This simplified model allows for analytic results that confirm conclu-
sions drawn from computer simulations for a wide range of parameter
settings.

The MG cell is modeled as a single compartment, stochastic thresh-
old device. All synaptic inputs are summed to yield a “noiseless
membrane potential” that represents the excitation level of the neuron

at each point in time. The total membrane potential is a combination
of the noiseless potential with a background noise term representing
uncorrelated synaptic activity. If the total membrane potential exceeds
a specified threshold, a spike is generated. This modeling approach is
similar to the “spike response” model (Gerstner and van Hemmen
1992) that has been used to study the auditory system in barn owls
(Gerstner et al. 1996). The MG cell model has two thresholds: a lower
threshold that generates a narrow (axonal) spike, and a higher thresh-
old that generates a broad (dendritic) spike. Only the broad spike
influences synaptic plasticity.

Two time scales are of importance to the model: a fast scale and a
slow scale. The fast scale characterizes the response of the MG cell to
the EOD over the course of tens of milliseconds and is limited to the
duration of each electric EOD. The slow scale represents the adapta-
tion of synaptic strengths due to synaptic plasticity over the course of
several minutes and lasting many EOD cycles. To represent these
processes independently, we separate these time scales into two sep-
arate components. Thex-component represents the time in millisec-
onds following the EOD, and thet-component represents the number
of EOD cycles. Thex-component is discretized withxn 5 n(Dx) for n
an integer. In the simulations,Dx 5 1 ms, and the number of time
steps N 5 150. Thus the dynamical variables in the model are
dependent on two temporal variables. For instance, the noiseless
membrane potential, denoted byV(xn, t), is a function of bothxn and
t. The probability of a broad spike during cyclet at time xn is a
threshold (sigmoid) function of the noiseless membrane potential.
With thresholdu, and noise parameterm, the spike probability is given
by the expression

f~xn, t! 5
1

1 1 exp$2m@V~xn, t! 2 u#%
(1)

For low membrane potentials, the spike probability saturates near
zero, and for high-input levels, the spike probability saturates at unity.
The instantaneous spike frequency is obtained by multiplying the
spike probability by the maximum spike frequency. The model con-
tains no relative refractory period, so the maximum spike frequency is
the inverse of the absolute refractory period. The refractory period
used in the model is 2 ms for narrow spikes, and 30 ms for broad
spikes (C. Bell, personal communication).

Network architecture

The model MG cell receives three inputs (see Fig. 3): parallel fiber
and stellate cell postsynaptic potentials representing inputs from the
molecular layer, and deep layer inputs that represent the electrosen-
sory image. The electrosensory image,Vel(xn), is based on recordings
from the ampullary region of the ELL and is designed to duplicate the
MG cell response to an EOD before adaptation takes place (Fig. 3).

The parallel fiber inputs are modeled as a time-delayed series of
excitatory postsynaptic potentials. Each EPSP begins at a specified
delay following the beginning of each EOD cycle. The sequence of
delayed EPSPs is represented in Fig. 3 as the weighted parallel fiber
inputs each beginning at a differentx-delay (x1, x2, x3, . . .). There is
one EPSP beginning at each discretization stepxn. The waveform,
E(xn), used for all the EPSPs is shown in Fig. 4. The EPSP waveform
was obtained from recordings in vitro of MG cells while inhibitory
inputs were pharmacologically blocked (Grant et al. 1998). The con-
tribution of each EPSP to the membrane potential is obtained by
multiplying the waveform by a synaptic weight,w(xm, t). The slow
time scalet-dependence is due to the adaptability of the synaptic
weights resulting from the rules of synaptic plasticity. The total
contribution of the parallel fiber synapses,Vpf (xn, t), to the membrane
potential is the sum of all individual contributions

Vpf ~xn, t! 5 O
m51

N

w~xm, t!E~xn 2 xm! (2)

FIG. 2. Synaptic plasticity.A: the change in postsynaptic potential follow-
ing pairing of a parallel fiber stimulus with postsynaptic broad spikes.Trace a
shows the postsynaptic potential following a test stimulus to the parallel fibers
before pairing. After 360 pairings with broad spikes that precede the parallel
fiber stimulus by 20 ms, the test stimulus produced a postsynaptic potential
shown bytrace b.After another 360 pairings, but this time the broad spikes
follow the parallel fiber stimulus by 20 ms leads to a postsynaptic potential
produced by the test stimulus shown bytrace c. Modified from Bell et al.
(1997b).B: temporal learning rules used in the simulations. The solid trace
shows the change in excitatory synaptic weight induced by the delay between
the beginning of the excitatory postsynaptic potential (EPSP) and a broad
spike. The dashed trace represents the same for the inhibitory weights.
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The sum runs over the time interval from the beginning of the EOD
cycle to the most delayed EPSP that is correlated with the cycle (N 5
150 in the simulations). The EPSP waveform is normalized to have
unit area, such that(nE(xn) 5 1.

The stellate cell inputs are modeled similarly to the parallel fiber
inputs, but as a series of IPSPs. The contribution of each IPSP is the
negative of the product of an IPSP waveform,2I(xn), with a synaptic
weight,v (xm, t). The IPSP waveform is positive [I(xn) $ 0 for all xn]
and is based on the difference between a postsynaptic potential
measured with and without inhibition blocking agents from experi-
ments in vitro (Grant et al. 1998). However, in the analyses and
simulations, IPSP initiations are not always delayed by regular series
of intervals that are correlated with the EOD. Because the timing of
IPSP inputs from stellate cells with respect to the EOD has not yet
been experimentally confirmed, the model is used to determine the
effects of different delay schemes. The contribution for all of the
stellate cells,Vst(xn, t), to the MG cell membrane potential is the sum
of all of the individual inputs (withN 5 150 in the simulations)

Vst~xn, t! 5 2O
m51

N

v~xm, t!I @xn 2 xm 2 dm~t!# (3)

where thexn are identical to those ofEq. 2, xn 2 nDx (Dx 1 1 ms in
the simulations). The delay offset term,dm(t), is used to vary the delay
of each inhibitory input relative to the beginning of each EOD cycle.
If the IPSPs are perfectly correlated with the EOD cycle as the EPSPs,
thendm(t) 5 0 for all t. However, if there is no correlation, thendm(t)
is assigned a random number for each cycle within the range of other
correlated inputs. The IPSP waveform is also normalized to have unit
area,(nI(xn) 5 1.

Shunting inhibition

The linear summation of EPSPs and IPSPs given above may not
reflect the complete contribution of inhibitory synaptic inputs. Current
from the excitatory synaptic inputs can be shunted through inhibitory

ion channels, thereby preventing the excitatory current from depolar-
izing the site of spike initiation (Koch et al. 1983; Rall 1964; Tuckwell
1986). The effects of shunting inhibition are compared with calcula-
tions with simple linear inhibition to determine what effects, if any,
shunting has on the learning dynamics.

Since the effect of shunting inhibition is to reduce the effective
injected current from the excitatory synapses, inhibitory synapses will
reduce the overall weight of EPSPs during the time course of the open
inhibitory receptors (see Fig. 4). For this purpose we use the open time
of GABAA receptors (Otis and Mody 1992) because IPSPs in the ELL
are mediated by GABAA. The time course of the IPSP differs from the
time course of the normalized conductance,G(xn), due to the electrical
properties of the neuron. This algorithm for this representation of the
shunting has been chosen because it is in the spirit of the spike
response model, that is, the model yields the change in the response of
the postsynaptic neuron’s output due to presynaptic spikes.

The shunted weight,ws(xn, t), is reduced by an amount that is
dependent on the strength of inhibition. Thus shunting is proportional
to the inhibitory weights,v(xn, t). Since these inhibitory synapses can
change in a use-dependent manner, the amount of shunting also
changes under synaptic plasticity of inhibitory synapses. A scaling
factor, s, is used in the model to control the maximum amount of
shunting by the inhibitory synapses. Excitatory synaptic weights are
reduced by shunting over the time course of the GABAA receptors’
open time, so that the shunted weights are computed by

ws~xn, t! 5 O
m51

N

w~xn, t!@1 2 sv~xm, t!G~xm 2 xn!# (4)

There are many excitatory and inhibitory inputs distributed along the
dendrites in the molecular layer, and there is no preferred spatial
location of the stellate cells throughout the apical dendrites of the MG
cells. Thus the spatial component of shunting is ignored in this model.
This method of including shunting inhibition into the model has been
compared with a two-compartment conductance-based model using
the neural modeling software package NEURON (Hines and
Carnevale 1994). In addition to Hodgkin-Huxley currents, one com-
partment included synaptic currents from a kinetic model ofa-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and GABA
receptors (Destexhe et al. 1994). The second compartment was used
for membrane potential measurements, and there agreement between
the methods was satisfactory.

FIG. 4. Postsynaptic waveforms. Three waveforms that are used to deter-
mine the synaptic input in the simulations. The scale for the postsynaptic
potentials (PSP) is on theleft and the scale for the shunting current is on the
right. The PSP units are normalized such that the integral of the functions is
unity. The EPSP waveform,E(xn), is given by the solid trace (Grant et al.
1998), the IPSP waveform,I(xn), is given by the dashed trace. The waveform
representing the shunting current induced by inhibitory synapses in dimen-
sionless units,G(xn) 5 xn exp(2xn/2), is given by the dotted trace (Otis and
Mody 1992).

FIG. 3. Model organization. The model MG cell is a threshold device with
noise. If the combination of the noiseless membrane potential plus Gaussian
noise is greater than a threshold, then a spike is generated. The model generates
2 types of spikes: narrow spikes and broad spikes. The broad spikes are the
postsynaptic events that are required for associative synaptic plasticity. Two
types of inputs are considered: electrosensory inputs that represent the electric
organ discharge (EOD) signal,Vel(xn), and adaptable synaptic inputs that
represent parallel fiber and stellate cell inputs. Each parallel fiber input con-
tributes an EPSP to the membrane potential represented by an EPSP waveform
weighted byw(xn, t). Each stellate cell input contributes an inhibitory postsyn-
aptic potential (IPSP) to the membrane potential represented by an EPSP
waveform weighted byv(xm, t). The noiseless membrane potential is the sum
of all inputs, sensory and synaptic.
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The noiseless membrane potential is the sum of all inputs (Eqs.
2–4)

V~xn, t! 5 Vpf ~xn, t! 1 Vst~xn, t! 1 Vel~xn! 5 O
m51

N

ws~xm, t!E~xn 2 xm!

2 O
m51

N

v~xm, t!I @xn 2 xm 2 dm~t!# 1 Vel~xn! (5)

The nonlinear shunting effects can be removed by settings 5 0 in the
expression for the shunted excitatory synaptic weight (Eq. 4).

Temporal learning rules

A previous study of this system characterized the consequences of
synaptic plasticity at excitatory parallel fiber synapses (Roberts and
Bell 2000). The learning rule governing synaptic plasticity was based
on an experimentally determined learning rule and depends on the
precise timing of the pre- and postsynaptic spikes during repetitive
pairings. These experimentally determinedtemporal learning rules
form the basis of the model’s implementation of synaptic change.
During each EOD cycle, the MG cell is activated by different parallel
fibers in a series of delays indexed byxn. The change of the excitatory
synaptic weights,Dw(xn, t) is functionally dependent on the time,xb,
of a broad spike in the postsynaptic neuron following the beginning of
each cycle. During each EOD cycle, there is a nonassociative en-
hancement of each synapse that is set by the nonassociative learning
rate parameter,aw. If a postsynaptic broad spike occurs during a
narrow time window following the beginning of the EPSP, the syn-
aptic weight is reduced proportionally to a learning function,Lw(xn),
scaled by the associative learning rate,bw

Dw~xn, t! 5 aw 2 bwLw~xb 2 xn! (6)

whereLw(xn) is normalized to have a unit area. Thus after each EOD
(at time t) the timings of the broad spikes are used to determine the
change in synaptic weights. The new magnitudes of the weights are
used in the next EOD (at timet 1 1) to compute the broad spike
probability.

The change in the inhibitory synaptic weights,Dv(xn, t), are simi-
larly treated, but with opposite sign and a different learning function,
Lv(xn)

Dv~xn, t! 5 2av 1 bvLv~xb 2 xn! (7)

Previous studies of the requirements for dynamical stability on the
learned sensory image of this system (Roberts and Bell 2000) suggest
that the learning functions should be equivalent to the postsynaptic
potential waveforms: the EPSP waveform for the excitatory synapses,
Lw(xn) 5 E(xn), and the IPSP waveform for the inhibitory synapses,
Lv(xn) 5 I(xn). This form of the learning function will be relaxed in
the simulations to test for measurable instabilities. The match between
the temporal learning rule and the EPSP waveform means that the
occurrence of a broad spike during the postsynaptic potential results in
an associative weight change for that synapse.

To make comparisons with experimental results on the rate of
adaptation, it is essential to use realistic values for the parameters of
the learning rules. Realistic values for the synaptic learning rates can
be obtained from recent data that plot the time course of EPSP
enhancement and depression in slice preparations for different delays
between the pre- and postsynaptic stimulations (Han and Bell 1999).
These data constrain the values ofaw andbw, the learning rates for
non-associative enhancement and associative depression.

The dynamics of the system were investigated by calculating the
average weight change in a continuum approximation of the formal-
ism presented above (cf.APPENDIX). The analysis was used to charac-

terize the general dynamics of the system independent of exact pa-
rameter choices.

Computer simulations were used to illustrate the dynamics of the
system and to test explicit examples of parameter choices. The above
formalism was implemented in a custom software package that could
generate the relevant variables and display the spike output of the MG
cell (the simulation software can be obtained by anonymous FTP from
reed.edu/ftp/reed/users/proberts). Edge effects were handled by ap-
plying periodic boundary conditions to thexn component. In the
simulations, the noiseless membrane potential was computed for each
EOD cycle. The weights were randomized in a uniform distribution
within 4% of their mean value. The assignment of broad during each
time step following the command signal was based on the computed
spike probability (Eq. 1) using a pseudo-random number generator.
The synaptic weights were updated following each cycle as deter-
mined by the timing of the broad spikes and the learning rules,Eqs.
6 and7.

A measure of the sensory image cancellation was required to
compare different conditions and their effects on the system. We used
the mean square contingency,x2(t)/N, to obtain the difference be-
tween the membrane potential,V(xn, t), and the time average of
V(xn, t) over the cycle length,V(t)

x2~t!

N
5

1

N
O
n51

N @V~xn, t! 2 V~t!#2

V~t!
(8)

whereV(t) 5 (1/N) (n51
N V(xn, t), andN 5 150 is the number of time

steps in the simulated EOD cycle. Low values ofx2(t)/N indicate an
average spike frequency that is nearly constant during the EOD cycle
representative of sensory image cancellation by a negative image
generated by the synaptic inputs of parallel fibers and stellate cells.

R E S U L T S

A spike response model (Gerstner and van Hemmen 1992)
of a medium ganglion cell was used to determine the adaptive
properties of its spike output due to synaptic plasticity. The
amplitude of both EPSPs and IPSPs would change depending
on the relative timing of pre- and postsynaptic spikes. The
learning rules would drive the output broad spike frequency to
an equilibrium level that is a function of the synaptic learning
rates.

As shown in theAPPENDIX, the final broad spike frequency,f̂,
of the model neuron after adaptation takes place is given by the

TABLE 1. Model parameters used in simulations

Simulation m u, %
max
(Vel) s aw av bw bv

Fig. 5, A andB 2 80 1.0 0 0.003 0.003 0.8 0.8
Fig. 5, A andC 2 80 1.0 0 0.003 0.002 0.8 1.2
Fig. 6, A andB 2 80 1.0 0 0.003 0.002 0.8 1.2
Fig. 6, A andC 2 80 1.0 0 0.003 0.004 0.8 0.4
Fig. 7, A andB 2 80 1.8 0 0.003 0 0.8 0
Fig. 7, A andC 2 80 1.8 0 0.003 0.003 0.8 0.8
Fig. 8, A 2 80 1.0 0 0.0001 0.0001 0.02 0.02
Fig. 9, A andB 2 80 1.0 0.2 0.003 0.003 0.8 0.8
Fig. 9, A andC 2 80 1.0 0.2 0.003 0.003 0.8 0.8

The simulations are referred by their figure number inRESULTS. All values
are normalized so that the synaptic weights are in the range, [0.0, 1.0]. The
broad spike threshold,u, is given as a percentage of the maximum membrane
potential. The maximum membrane potential is the maximum parallel fiber
contribution (normalized to unity) plus the maximum electrosensory image,
max (Vel).
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sum of the non-associative learning rates divided by the sum of
the associative rates

f̂ 5
aw 1 av

bw 1 bv
(9)

If the learning rates for excitatory and inhibitory synapses are
equal (a 5 aw 5 av andb 5 bw 5 bv), then this expression
reduces to the ratio of the non-associative learning rate to the
associative learning rate (a/b) as derived previously (Roberts
and Bell 2000) for plasticity at only excitatory synapses.

However, if the learning rates differ, then the average of the
weights continue to drift even though the broad spike proba-
bility has attained a constant value,f̂. The ensemble average
change in the synaptic weights is (seeAPPENDIX)

^Dw~xn, t!& 5 ^Dv~xn, t!& 5
awbv 2 avbw

bw 1 bv
(10)

The excitatory synaptic weights drift at a rate equivalent to
the drift of the inhibitory weights, confirming that the broad
spike probability remains constant. The drift-rate expression
implies that the synaptic weights saturate at their highest values
if the ratio aw/bw is greater than the ratioav /bv , and the
weights saturate at their lowest value ifaw/bw is less than
av /bv .

Uncorrelated inhibitory synaptic input

If the stellate cells in the molecular layer do not fire in
response to the parallel fibers that are time locked with the
EOD, their input will be uncorrelated with the electric organ
cycle. The first simulation investigates whether any measurable
effects would result from synaptic plasticity of uncorrelated
stellate inputs. The EPSPs arrive in a delayed series of adapt-
able inputs for up to 150 ms following the onset of the EOD.
However, each of the 150 stellate cell–induced IPSPs arrive at
a different time during each EOD cycle. The delay,dm(t),
assigned to each IPSP is randomly distributed throughout the
first 150 ms of each cycle, with one IPSP beginning at each
time step. When this delay ist-dependent, it changes with each
EOD cycle. Thus the IPSPs are here not correlated with the
EOD.

In this case of randomly timed inhibitory inputs, the plas-
ticity of inhibitory synapses adds no observable dynamics to
the system other than contributing to the background noise.
The rate of adaptation to changing sensory stimuli is the same,
and the range of adaptability is the same.

If the plasticity is only at excitatory synapses, it can be
shown that conditions must be imposed on the excitatory
learning rule to ensure stability of the negative image. There
must be a nonassociative enhancement component to the learn-
ing rule, and associative depression must be close to the form
of the epsp waveform (Roberts 2000; Roberts and Bell 2000).
If the inhibitory synaptic inputs arrive at random delays, then
the same conditions on the excitatory learning rule apply as
without inhibitory plasticity.

An interesting result of inhibitory plasticity with randomly
timed inhibitory inputs is that saturation of the weights caused
by synaptic drift (Eq. 10) distorts the negative image of the
sensory pattern. The noiseless membrane potentials for two
simulations are shown in Fig. 5A, where the solid line repre-
sents the results of a simulation att 5 600 and the learning

rates of the excitatory (parallel fiber) synapses were set equal
to the learning rates of the inhibitory (stellate cell) synapses.
The input of the parallel fibers plus stellate cells cancel the
sensory input [x2(t)/N 5 1]. The dashed line in Fig. 5A shows
the resulting noiseless membrane potential att 5 600, where
awbv , avbw. Here the weights have saturated at their lowest
value (Fig. 5C) so that the inputs are unable to cancel the
highest peak of the sensory image [x2(t)/N 5 63]. Thus syn-
aptic plasticity at inhibitory synapses that have a random delay
can be detrimental to the fidelity of the negative image gener-
ated by the parallel fiber inputs unless the learning rates are
finely tuned.

Correlated inhibitory synaptic input

When inhibitory inputs are correlated with the EOD, in
contrast to the uncorrelated condition considered in the previ-
ous section, plasticity at inhibitory synapses can contribute to
the formation of a negative image. In particular, plasticity at
inhibitory synapses allows the sum of IPSPs to complement the
contribution of the EPSPs when the weights of excitatory
inputs are saturated.

FIG. 5. Randomly timed IPSPs: membrane potential and weights.A: the
noiseless membrane potential generated by simulations following 600 cycles
of adaptation to a “electrosensory stimulus” represented by the dotted trace.
The solid [x2(t)/N 5 1] trace shows the noiseless membrane potential gener-
ated by the weight configuration ofB. The dashed trace [x2(t)/N 5 63] is
generated by the weight configuration ofC. B: weight configuration following
600 cycles of adaptation where the ratio of the learning rates are equal.
Excitatory synaptic weights are represented by the dotted trace, and inhibitory
weights by the solid trace. The weights are labeled by the presynaptic spike
time following the beginning of the EOD cycle.C: weight configuration
following adaptation with an inequal ratio of the learning rates.
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The results of two simulations demonstrating this phenom-
enon are shown in Fig. 6. The noiseless membrane potential is
shown by the two horizontal traces in Fig. 6A. In the first
simulation (weights shown inB) the ratio of learning rates is
aw/bw , av /bv. After 400 cycles, the inhibitory synaptic
weights are reduced to their lowest values except for an inter-
val between 60 and 85 ms following the command signal. It is
during this interval that the IPSPs contribute to the total mem-
brane potential during the depolarizing sensory input (the peak
of the dotted trace in Fig. 6A). This interval of increased
inhibitory current subtracts the residue to form a negative
image that the excitatory current cannot effect because its
weights are saturated at their zero level. During the remainder
of the EOD cycle, the excitatory inputs adjust to cancel the
sensory image. This effect is independent of the starting con-
ditions for the weights. On possible advantage of this satura-
tion effect would be to minimize he synaptic output required to
generate a negative image, thereby reducing the use of synaptic
resources, such as neurotransmitters.

The second simulation shows the result of setting the ratio of
inhibitory learning rates less than the excitatory rates,av /bv ,
aw/bw. In this case, the weights saturate near their greatest

values (Fig. 6C). The inhibitory synaptic weights are reduced
during the interval where they contribute to canceling the
hyperpolarizing sensory input. In this case, the system maxi-
mizes its use of synaptic resources.

Range of adaptability

Inhibitory plasticity introduces adaptable postsynaptic po-
tentials that can allow the neuron to generate a negative image
to cancel a much broader range of sensory input intensity. This
is seen analytically in the added term of the summation over
IPSPs (Eq. 5). The first two terms on the right hand side must
combine to level the variations of sensory image,Vel(xn), over
xn. Inhibitory plasticity allows the weights of the IPSPs,v (xn,
t), to adapt so that hyperpolarizing regions ofVel(xn) can be
canceled for higher peaks in the sensory image. Since there are
more inputs to adjust through synaptic plasticity, a greater
range of input intensities can be canceled. Although the adap-
tive range to hyperpolarizing sensory input could be increased
with the addition of more excitatory inputs, the increased range
of adaptation to depolarizing sensory input requires plasticity
at inhibitory synapses.

Two simulations depicted in Fig. 7 demonstrate the in-
creased range of adaptability. The first simulation increased the

FIG. 6. Saturation of synaptic weights.A: in this simulation, the IPSPs are
a series of delayed inputs that are correlated with the beginning of each cycle.
The dotted trace represents the “electrosensory stimulus” that is paired with the
delayed series of EPSPs and IPSPs. The solid [x2(t)/N 5 1] trace shows the
noiseless membrane potential generated by the weight configuration ofB. The
dashed trace [x2(t)/N 5 1] is generated by the weight configuration ofC. B:
weight configuration following 400 cycles of adaptation withawbv , avbw.
The inhibitory weights (—) are reduced to their lowest values except where the
excitatory weights (z z z) are saturated.C: weight configuration following 400
cycles of adaptation withawbv , avbw.

FIG. 7. Range of adaptability.A: the “electrosensory stimulus” (– – –) has
been increased by a factor of 7/4 compared with the previous simulations (z z z).
The curved [x2(t)/N 5 321] solid trace shows the noiseless membrane potential
generated by the weight configuration ofB. The flat [x2(t)/N 5 2] solid trace
is generated by the weight configuration ofC. B: weight configuration follow-
ing 400 cycles of adaptation without plasticity at inhibitory inputs (—). The
excitatory weights (z z z) are saturated.C: weight configuration following 400
cycles of adaptation with inhibitory inputs correlated with the EOD cycle.
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gain of the sensory input,Vel(xn) ( z z z , Fig. 7A). The system
could not adapt to the large stimulus gain. The total membrane
potential is seen to deviate from a flat line (– – –, Fig. 7A).
Under these conditions, the cancellation of the sensory input by
the molecular layer inputs is incomplete. The range of the
system’s adaptability is limited because the inhibitory weights
were constant int. Saturation of the excitatory synaptic weights
can be seen in Fig. 7B.

The second simulation is run with the larger gain, but the
IPSPs are now plastic and correlated with the EOD cycle and
EPSPs (Fig. 7C). Here the inhibitory inputs are able to con-
tribute to the formation of a negative image so that the total
membrane potential is nearly constant during the EOD cycle
(Fig. 7A, solid trace).

Rate of adaptation

The system level rate of adaptation measures the time it
takes from an abrupt change in the predictable sensory image
to be canceled by the generation of a negative image. As
derived in theAPPENDIX, the rate at which deviations in the
membrane potential flatten is a monotonic increasing function
of both excitatory and inhibitory learning rates (Eq. A16). If a
is the ratio of inhibitory learning rates to excitatory learning
rates (a 5 av /aw 5 bv /bw), plasticity at inhibitory synapses
increases the rate of adaptation by a factor of (11 a)21.

A simulation was run with the inhibitory learning rates,av
andbv , set equal to the excitatory learning rates based on the
physiological values for excitatory plasticity (Han and Bell
1999). The value ofx2(t)/N is plotted in Fig. 8A for three
conditions of the inhibitory synapses: no plasticity (z z z ), plas-
ticity according to the learning rule in Fig. 2B, and random
timing with respect to the EOD (—), and plasticity with the
timing in a series of delays following the beginning of the EOD
(– – –). The adaptation time course for the serially delayed
plastic inhibitory synapses is considerably shorter than the
other two schemes. Fitting an exponential curve [A 1 B
exp(2t/t), whereA is an offset parameter,B is an overall scale

factor, andt is a decay constant] to the plot, we find that the
decay constant for the simulation with excitatory plasticity
only is tE 5 641 cycles. For the serially delayed, inhibitory
plasticity simulation the decay constant istE1I 5 168 cycles.

These decay constants can be converted into the rate of
adaptation in the ELL by considering that in preparations in
vivo, spontaneous electric organ discharges occur at intervals
of 150–400 ms. Thus the ranges of decay constant values
predicted by our simulations aretE 5 1.6–4.3 min andtE1I 5
0.4–1.2 min. The adaptation rate measured by the difference in
spike rate between the pause and burst phase of the electric
organ cycle is plotted in Fig. 8B. Although this is not the same
method of measuring the deviation from a constant spike rate
as ourx2(t)/N analysis, the rates are comparable because they
differ only in an overall scale factor and offset parameter.
Fitting these graphs to an exponential curve yields the decay
constants,texp1 5 0.9 min andtexp2 5 0.5 min. Only the
simulation with a series of delayed synapses and inhibitory
plasticity has a range oft values that is consistant these data.

However, there is a discrepancy between how much the
decay constant is reduced by inhibitory plasticity as predicted
by the analysis presented in theAPPENDIX and the simulation.
The analysis predicts thattE 5 2tE1I, but the exponential fit of
the simulation yieldstE 5 3.8tE1I. The reason for this differ-
ence is that the analysis linearized the equation for synaptic
change by expanding the broad spike probability near the
(constant) equilibrium level (Eq. A10). Thus we can only
expect the analysis to be accurate when the system is near the
constant spike probability. If we fit only the regions of the
graph in Fig. 8A where the mean square contingencyx2(t)/N #
40, then we find the relationship between the decay constants
to betE 5 2.1tE1I, bringing the analysis into close agreement
with the simulation.

Another important result that follows from calculations of
the decay constant,t, is an analysis of instabilities in the
learning dynamics. If the associative depression learning func-
tion does not closely resemble the postsynaptic potential, then
oscillations can develop in the spike activity that interfere with

FIG. 8. Rate of adaptation.A: the mean square contingency,x2(t)/N, measures the deviation of the noiseless membrane potential
from a constant during each cycle, thus measures the progress of adaptation over the many cycles. The solid (noisy) trace shows
the progress of adaptation from a simulation where the inhibitory inputs are plastic, but randomly correlated with the EOD cycle.
The dotted trace shows the progress with no inhibitory plasticity. The (faster adapting) dashed trace shows the result of both
inhibitory plasticity and ipsps correlated with the EOD cycle.B: data from 2 experiments in vivo. The solid lines show the response
to the command signal measured by taking average number of spikes between 20 and 60 ms after the EOD command, and
subtracting the average number of spikes between 60 and 100 ms. The dashed traces are best-fit exponential curves discussed in
the text. Figure modified from Bell (1982).
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the generation of a negative image (Roberts and Bell 2000).
We find this to be true of the learning rules for both the
excitatory synapses and the inhibitory synapses. Analytically,
instabilities appear if the real part of the decay constant be-
comes negative [Re(1/t) , 0]. We have also used the simula-
tions to test several timing relations for pairing of parallel fiber
spikes and postsynaptic broad spikes. Simulations were run for
4,000 EOD cycles; long enough for unstable oscillations to
develop. The window of associative depression was shifted to
different delays from the beginning of the EPSP for each
simulation. Instabilities developed for shifts outside the range
from 29 to 12 ms. These simulations have confirmed that very
few learning rules are stable. Thus if there is inhibitory plas-
ticity in this system, the model predicts that only a narrow
range of learning rules will replicate the results of experiments
in vivo.

Shunting inhibition

Since inhibitory synapses are able to shunt depolarizing
currents, we used the model to determine whether any new
dynamics were introduced by such nonlinear inhibition. Sim-
ulations were run for all of the above results with the excitatory

weights reduced by the inhibitory shunting as described byEq.
4. The results indicate that no new dynamics were introduced
by the addition of this nonlinear form of inhibition. No insta-
bilities developed, and the rate of adaptation was unchanged.

The main result is that the effective strength of the inhibitory
inputs was increased because they not only reduced the mem-
brane potential by subtracting the IPSPs, but also reduced the
weight of the EPSPs. When the series of adaptable IPSPs were
correlated with the EOD cycle, the system generated a stable
negative image to cancel the sensory input (Fig. 9,A andB).
Because of the increased strength of the IPSPs due to shunting,
the larger depolarizing actions of the sensory image sensory
image could be effectively canceled.

If the IPSPs were uncorrelated with the EOD so that each
IPSP began at a random delay following the beginning of the
cycle, then the excitatory inputs were unable to cancel the
sensory stimuli without saturating, as shown in Fig. 9C. Except
for the shunting effects, this simulation used the same param-
eter settings as the run that generated the data for Fig. 5. Thus
the shunting inhibition would require a greater range of the
excitatory synaptic weights to cancel the same magnitude of
sensory stimuli.

D I S C U S S I O N

Summary of results

The results presented here lend support to the hypothesis that
the inhibitory synapses from stellate cells to the medium gan-
glion cells of the ELL exhibit a form of plasticity that depends
on the timing of the pre- and postsynaptic spikes. These results
follow only if there are inhibitory inputs that are correlated
with the EOD cycle in a series of delays following the dis-
charge. In simulations that include these inhibitory inputs
along with experimentally based learning rates for synaptic
plasticity, the system level adaptation to a change in sensory
stimuli occurs at a rate comparable to the rate measured in
experiments in vivo.

The reason that such a simple model can accurately predict
the system level rate of adaptation is that the learning dynamics
depend primarily on the synaptic learning rates and the timing
of broad spikes during each EOD cycle. The complex internal
dynamics of MG cells do not contribute prominently to the
learning dynamics on the relevant time scale of 10–100 ms,
except to ensure that a few broad spikes appear every cycle at
a rate that increases with depolarization.

Our results show advantages to having plasticity at both
excitatory and inhibitory synapses. Advantages include an in-
creased rate of adaptation and an ability to adapt to a wider
range of stimulus intensities. These results of the model could
be tested experimentally by blocking inhibition in the ELL and
measuring the rate and range of adaptation of MG cells due to
changing electrosensory stimuli. In addition, the combination
of excitatory plus inhibitory plasticity can provide a means of
regulating the overall synaptic current injected into the apical
dendrites by taking advantage of the “drift” of the synaptic
weights when the ratio of the excitatory learning rates (aw/bw)
is less than the ratio of the inhibitory learning rates (av /bv).
Under these conditions the injected current will be reduced to
the lowest level that is still capable of sculpting a negative
image to cancel the predictable sensory input. The actual ratios

FIG. 9. Effects of shunting inhibition.A: the noiseless membrane potentials
where the weight of the excitatory inputs are diminished by “currents” induced
by the inhibitory synapses. The solid [x2(t)/N 5 3] trace shows the noiseless
membrane potential generated by the weight configuration ofB. The dashed
trace [x2(t)/N 5 15] is generated by the weight configuration ofC. The dotted
trace represents electrosensory input.B: weight configuration following 400
cycles of adaptation with inhibitory inputs correlated with the EOD cycle
(excitatory weights are represented by the dotted trace and inhibitory weights
be the solid trace).C: weight configuration following 400 cycles of adaptation
with inhibitory inputs randomly timed with respect to the EOD cycle.
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of learning rates have not been measured experimentally for
inhibition, but one would not expect the values for excitation
and inhibition to match exactly.

The introduction of plasticity at inhibitory synapses in-
creases the number of storage sites for learning. Thus the
computational capacity is expanded by allowing temporal pat-
terns to be encoded and stored in the strengths of inhibitory as
well as excitatory synapses (Kano 1996). In addition, plasticity
at inhibitory synapses provide a wider-range control of
postsynaptic neuronal activity. We have shown this with our
model by the expanded range of adaptability acquired using
inhibitory plasticity.

The benefits of inhibitory plasticity can only be reaped if the
inhibitory inputs are correlated with the EOD in a series of
delays. In fact, if the inhibitory inputs are not correlated with
the EOD, and the learning rate ratios are not perfectly equal,
then inhibitory plasticity would reduce the effectiveness the
sensory image cancellation. In addition, there is no increased
rate of adaptation, and the range of adaptation is actually
reduced relative to what it would be without inhibitory synaptic
plasticity, particularly if shunting inhibition is present in the
model.

The study of uncorrelated inhibitory input reveals a situation
where there is a gradual decay of inhibitory synaptic strength
that is counteracted by randomly distributed broad spikes rel-
ative to stellate cell spikes. As seen in Fig. 5, this has the effect
of normalizing the inhibitory input.

The treatment of shunting inhibition in this study did not
introduce any new dynamics to the model. The shunting inhi-
bition only increased contributions of inhibitory input relative
to that of excitatory input. With shunting inhibition there is not
only the linear contribution of the weighted sum of IPSPs, but
also adivisive effect(Carandini and Heeger 1994) due to the
reduction of the EPSPs by a multiplicative factor. However,
because the stellate cells are distributed diffusely throughout
the molecular layer, they are excited by parallel fibers that also
excite the medium ganglion cells. Thus in this model the
nonlinearity of the shunting is proportional to the linear effects
of inhibition, and no marked change in system dynamics is
observed.

Further research

The present model represents the activity and adaptation of
a single MG cell in the ELL. However, the ELL is a cortical
structure with complicated interconnections between the resi-
dent neurons. Physiological and morphological studies (Grant
et al. 1998; Han et al. 1999) have suggested a basic modular
structure with excitatory (E) modules and inhibitory (I) mod-
ules. The efferent neurons of the E-modules are excited by the
electrosensory stimuli in the center of their receptive fields, and
the efferent neurons of the I-modules are inhibited by stimuli in
the center of their receptive fields. Recent anatomical studies
(Han et al. 1999) suggest that the MG cells of each of these
modules are synaptically interconnected, thus inhibiting each
other. One inhibition of the present model is that such mutual
inhibition and other circuitry features have not been included.

One possible explanation of the data on inhibitory plasticity
in the ELL that has not been addressed in this model is that
plasticity at the synapse from parallel fibers onto stellate cells
could be responsible for the apparent plasticity of IPSPs. This

type of plasticity has been observed in the hippocampus (For-
tunato et al. 1996; Gupta et al. 2000). Slice experiments could
be used in the ELL to isolate the inhibitory plasticity to the
synapse from stellate cells onto MG cells. A paring paradigm
similar to that used for excitatory plasticity (Bell et al. 1997c)
could measure the change of IPSPs with glutamate blockers in
the bath. The presynaptic stimulation in the molecular layer
would have to be strong enough to elicit an IPSP in the MG
cell. This type of experiment could show if inhibitory plasticity
really exists in this system. However, it would be very difficult
to eliminate the possibility that there is also plasticity at the
synapse from parallel fibers onto stellate cells in vivo.

There is a theoretical argument against the relevance of this
latter type of plasticity to the effect presently investigated: the
adaptation of MG cell responses to changes in predictable
electrosensory stimuli. The learning rules investigated here are
triggered by the timing of broad spikes in MG cells. The broad
spikes are the carriers of information about the electrosensory
stimuli. For the synapses from parallel fibers onto stellate cell
to change in concert with the synapses onto MG cells, one
would need to hypothesize another information pathway to
signal the stellate synapse about the predictable aspects of
electrosensory stimuli. Although it is possible that such a
pathway exists, this would not lead to a parsimonious descrip-
tion of the system dynamics with the known anatomy.

Another possible limitation to the present model is the
assumption that the stellate cells fire only once per EOD cycle.
No recordings of identified stellate cells have been made in
support this assumption. As we saw in the results, completely
uncorrelated synapses tend to adjust to a level that contributes
proportionally to the equilibrium broad spike frequency. If
there were several uncorrelated stellate cell spikes per cycle,
but one spike per cycle was consistently at the same delay
following the EOD, then that one spike would be able to drive
the synaptic input to cancel the predicted sensory pattern. The
present model tested two extreme conditions: stellate cells fire
perfectly correlated with the EOD or perfectly uncorrelated.
The true timing of stellate cells with respect to the EOD most
likely lies somewhere in between these extreme cases.

The relevance of the spike timing of stellate cells becomes
more apparent when one considers the responsiveness of stel-
late cells to parallel fiber spikes compared with that of MG
cells. Although data are not available for the mormyrid ELL,
some indication appears in the gymnotiform ELL (Berman and
Maler 1998) and the mammalian cerebellum (Barbour 1989)
that stellate cells in the molecular layer are much more sensi-
tive to parallel fiber spikes than the principal neurons they
inhibit (pyramidal cells in the gymnotiform ELL and Purkinje
cells in the cerebellum). The difference in responsiveness
could be a result of stellate cells being more electrotonically
compact that the principal cells, a condition that would gener-
alize to the mormyrid ELL. Granule cells that give rise to
parallel fibers receive input from many sources besides corol-
lary discharge signals, so it is likely parallel fibers are active,
and therefore so are stellate cells, even when there is no EOD.
The present model restricts the activity of stellate cells to the
first 150 ms following the EOD. In the absence of MG cell
broad spikes, the stellate cell synapses onto MG cells would be
depressed to their lowest possible levels due to these asynchro-
nous stellate spikes. However, the MG cells that are driven by
ampullary electroreceptor afferents would respond with ran-
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domly timed broad spikes. In analogy with the uncorrelated
stellate cell spikes (Fig. 5), the learning rule acts to normalize
the inhibitory inputs to a constant broad spike output.

An extension of the model that was studied for excitatory
plasticity (Roberts and Bell 2000) is the effects of different
temporal learning rules on the dynamics of sensory adaptation.
In contrast to the excitatory learning rule, the choice of learn-
ing rule used for the inhibitory synapses was not measured
experimentally, but hypothesized to be the inverse of the
temporal learning rule governing excitatory synapses. Similar
results apply here as in a previous modeling study for excita-
tory synaptic plasticity alone (Roberts and Bell 2000); only a
near match between the postsynaptic potential and the learning
function can lead to a stable negative image. That is, if the
postsynaptic potential is excitatory, then the associative com-
ponent of the learning rule must depress the synapse and have
a time course that closely matches the EPSP. This is the
theoretical reason for our choice of an associative component
for the learning rule that enhances the inhibitory synapses by
an amount that is proportional to the IPSP.

In simulations where other temporal learning rules were
used at either the excitatory or inhibitory synapses, oscillations
developed that prevented the cancellation of the predictable
sensory signal. In addition, to generate a negative image, the
non-associative component must have the same sign as the
contribution of the postsynaptic potential: enhancement for the
excitatory synapses and depression for the inhibitory synapses.
Thus the present modeling study suggests not only the exis-
tence of synaptic plasticity at inhibitory synapses from stellate
cells onto MG cells, but also predicts the temporal form of the
learning rule that changes the synaptic efficacy depending on
the exact timing between the pre- and postsynaptic spike.

A P P E N D I X

In this APPENDIX we derive the analytic results reported inRESULTS.
The equilibrium spike probability can be calculated by considering the
situation when the noiseless membrane potential is constant int so
thatDV(xn, t) 5 0. From the definition of the membrane potential (Eq.
5), the only variable that changes as a function oft are the synaptic
weights. Thus the membrane potential is stationary when

O
m51

N

^Dw~xm, t!&E~xn 2 xm! 2 O
m51

N

^Dv~xm, t!&I ~xn 2 xm! 5 0 (A1)

The ensemble average (denoted by the brackets,^ &) of the weight
change is found by averaging over the probability of the occurrence of
a broad spike,f(xp, t), at each time following the EOD

^Dw~xn, t!& 5 aw 2 bw O
p51

N

Lw~xp 2 xn!f~xp, t! (A2)

and similarly for the inhibitory synapses

^Dv~xn, t!& 5 2av 1 bv O
p51

N

Lv~xp 2 xn!f~xp, t! (A3)

where the broad spike probabilityf(xp, t) is defined inEq. 1. The
learning rates,aw, bw, av , andbv are nonnegative real numbers, and
the learning functions,Lw(xn) and Lv(xn), represent the amount of
associative change for different delays between the pre- and postsyn-
aptic spikes (seeEqs. 6 and 7). In the analysis of this study, the

learning functionsLw(xn) andLv(xn) are equivalent to the EPSP and
IPSP wave functions, respectively.

As has been shown previously (Roberts and Bell 2000), the sta-
tionary membrane potential implies that the broad spike probability is
a constant of bothx and t, f(x, t) 5 f̂. Substituting intoEq. A1 the
expressions for the average change in synaptic weights per cycle (Eqs.
A2 and A3), we arrive at the condition

O
m51

N Faw 2 bw f̂ O
p51

N

Lw~xp 2 xn!GE~xn 2 xm!

2 O
m51

N F2av 1 bv f̂ O
p51

N

Lv~xp 2 xn!G I ~xn 2 xm! 5 0 (A4)

Since the learning functions and the postsynaptic potential waveforms
have been normalized to unity, the summations drop out and we ar-
rive at

aw 2 bw f̂ 1 av 2 bv f̂ 5 0 (A5)

which can be solved for the constant broad spike probability

f̂ 5
aw 1 av

bw 1 bv
(A6)

If there is no plasticity at inhibitory synapses,av 5 bv 5 0, then the
result obtained for excitatory plasticity only is recovered,f̂ 5 aw/bw.
This equilibrium broad spike probability is also obtained if the ratio of
the non-associative learning rate to the associative learning rate is the
same for the excitatory as for the inhibitory synapses,aw/bw 5 av /bv .

If these ratios are not equal, then by substitutingf̂ into the expres-
sions for the average weight changes (Eqs.A2 and A3), we find

^Dw~xm, t!& 5 ^Dv~xm, t!& 5
awbv 2 avbw

bw 1 bv
(A7)

This expression implies that the weights change at the same rates
while the spike frequency remains constant. The rate of this “drift” is
determined by the difference between the ratios of the learning rates.

The rate of adaptation for the system is measured by the time it
takes to approach an equilibrium broad spike frequency. The time
constant,t, associated to this rate can be calculated using the change
in the membrane potential per cycle

DV~xn, t! 5 O
m51

N

^Dw~xm, t!&E~xn 2 xm! 2 O
m51

N

^Dv~xm, t!&I ~xn 2 xm! (A8)

This expression was derived from the definition of the membrane
potential (Eq. 5), using the fact that the change is dependent only on
the t-dependent factors. Substituting the expressions for the average
change in synaptic weights, we arrive at

DV~xn, t! 5 aw 1 av 2 bw O
m51

N O
p51

N

f~xp, t!E~xp 2 xn!E~xn 2 xm!

2 bv O
m51

N O
p51

N

f~xp, t!I ~xp 2 xn!I ~xn 2 xm! (A9)

Note that the nonassociative learning rate for the inhibitory synapses
increases the membrane potential because the rate represents a de-
crease of the inhibitory input per cycle.

The rate of change of the membrane potential can be calculated by
expanding the broad spike probability function,f(xn, t), about the
equilibrium value,f̂. At the equilibrium value, the noiseless membrane
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potential is defined to beU# so thatf̂ 5 {1 1 exp[2m(U# 2 u)]} 21. The
first two terms of the Taylor expansion of the broad spike probability
function near equilibrium are

f~xn, t! 5 f̂ 1 F ­f~xn, t!

­V~xn, t!G V5U

@V~xn, t! 2 U# 1 · · ·

5 f̂ 1 m~ f̂ 2 f̂ 2!@V~xn, t! 2 U# 1 · · · (A10)

Substituting the first two terms intoEq. A9 yields

DV~xn, t! 5 2m~ f̂ 2 f̂ 2!Fbw O
m51

N O
p51

N

V~xp, t!E~xp 2 xn!E~xn 2 xm!

1 bv O
m51

N O
p51

N

V~xp, t!I ~xp 2 xn!I ~xn 2 xm! 1 ~bw 1 bv!UG (A11)

Next we approximate the membrane potential by its deviation from
the equilibrium level and choose the solutions for the difference
equation as decaying oscillations in thex-component

V~xn, t! 5 U 1 eikxne2t/t (A12)

In the continuum limit of thet-component, the change of the mem-
brane potential becomes a differential

DV~xn, t! 3
d

dt
V~xn, t! 5 2

1

t
eikxne2t/t (A13)

Approximating the sum inEq. A11 by integrals and changing vari-
ables,y 5 xp 2 xm andz5 xp 2 xn, we arrive at an expression for the
rate of adaptation

1

t
5 m~ f̂ 2 f̂ 2!@bw E

0

`

dyE
0

y

dzeikzE~y!E~y 2 z!

1 bv E
0

`

dyE
0

y

dzeikzI ~y!I ~y 2 z! (A14)

Let the EPSP and IPSP waveforms be defined by normalizeda-func-
tions,E(x) 5 E2 exp(2Ex) and I(x) 5 I2 exp(2Ix).

If the real part of the decay constant (t) is positive, then the
oscillatory modes will not grow and the membrane potential will
reach an equilibrium value that is constant inx. On evaluating the
integrals inEq. A14, we find that the real part of the decay constant
is

ReS1

t
D 5 m~ f̂ 2 f̂ 2!F bwE4

2~E2 1 k2!2 1
bvI

4

2~I 2 1 k2!2G (A15)

This expression may be simplified by allowing the IPSP time constant
to equal the EPSP time constant,I 5 E. Substituting in the solution for
the equilibrium broad spike probability, we have

ReS1

t
D 5 m

~aw 1 av!~bw 1 bv! 2 ~aw 1 av!
2

bw 1 bv
F E4

2~E2 1 k2!2G (A16)

This expression is positive for allaw , bw and av , bv and is
monotonic increasing function of bothav andbv for 2(aw 1 av) ,
(bw 1 bv). Typically, aw ,, bw (Han and Bell 1999). If we assume
a similar proportionality betweenav andbv , then plasticity of inhib-
itory synapses increases the rate of adaptation by decreasing the real
part of the time constantt.

To calculate how much the rate of adaptation is increased by
plasticity at inhibitory synapses, leta 5 aw 5 av /a and b 5 b 5
bw 5 bv /a, wherea is a constant real number. Using these values, we
simplify the expression for the decay rate (Eq.A16). If E is the decay

parameter for the EPSP waveform, andk is the frequency mode of the
decaying disturbance, we find that

ReS1

t
D 5 m~1 1 a!

a~b 2 a!

b
F E4

2~E2 1 k2!2G (A17)

where Re(1/t) is the real part of 1/t. Thus the time constant,t, for
adaptation decreases by a factor of (11 a)21 with the addition of
plasticity at inhibitory synapses.
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