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Roberts, Patrick D. Modeling inhibitory plasticity in the electrosen- Knudsen 1999). These studies suggest that the inhibitory path-

sory system of mormyrid electric fisB NeurophysioB4: 2035-2047, ways are an important component to adaptation of neuronal
2000. Mathematical analyses and computer simulations are useQéonnses to changing sensory conditions.

study the adaptation induced by plasticity at inhibitory synapses in a,, . : .
cerebellum-like structure, the electrosensory lateral line lobe (ELL) flt is not always clear in these system level studies whether

mormyrid electric fish. Single-cell model results are compared with€ Plasticity occurs at excitatory synapses onto inhibitory
results obtained at the system level in vivo. The model of system levaterneurons or at the inhibitory synapses themselves. Plastic-
adaptation uses detailed temporal learning rules of plasticity at exitif localized to inhibitory synapses themselves has been dem-
tatory and inhibitory synapses onto Purkinje-like neurons. Synaptipistrated, however, in a few different systems including inhib-
plasticity in this system depends on the time difference between pgsry synapses in the visual cortex (Komatsu and Iwakiri 1993),
and postsynaptic spikes. Adaptation is measured by the ability Of%ibitory neurons on Mautner cells (Kom et al. 1992), and

system to cancel a reafferent electrosensory signal by generating a., . S )
negative image of the predicted signal. The effects of plasticity a&éh'b'tory neurons onto Purkinje cells in the cerebellum (Kano

tested for the relative temporal correlation between the inhibitoRf @l- 1992). Plasticity at such inhibitory synapses is likely to be
input and the sensory input, the gain of the sensory signal, and tAgportant in central processing of sensory information as well
presence of shunting inhibition. The model suggests that the preseaseof other types of information. But few published modeling
of plasticity at inhibitory synapses improves the function of thetudies of inhibitory plasticity (Marshall 1990; Nelson and

system if the inhibitory inputs are temporally correlated with @ prgsajin 1995; Sirosh and Miikkulainen 1994) have elucidated
dictable electrosensory signal. The functional improvements |ncluﬂ?? potential roles of plasticity at inhibitory synapses. Further-

an increased range of adaptability and a higher rate of system leve

adaptation. However, the presence of shunting inhibition has liflBOre; the interactions between inhibitory plasticity and plas-

effect on the dynamics of the model. The model quantifies the rateligity at excitatory synapses are only poorly understood.
system level adaptation and the accuracy of the negative image. wdhe present study uses techniques of mathematical and
find that adaptation proceeds at a rate comparable to results obtaipethputer modeling to examine the possible roles and contri-
from experiments in vivo if the inhibitory input is correlated withpytions of plasticity at inhibitory synapses in the electrosensory
electrosensory input. The mathematical analysis and computer Siuta | ine lobe (ELL) of mormyrid electric fish. This structure,

lations support the hypothesis that inhibitory synapses in the molec- . . !
ular layer of the ELL change their efficacy in response to the timi d other cerebellum-like sensory structures in electroreceptive

of pre- and postsynaptic spikes. Predictions include the rate of adigh. have been shown to be adaptive sensory processors that
tation to sensory stimuli, the range of stimulus amplitudes for whickbtract out predictable features of the sensory inflow follow-
adaptation is possible, the stability of stored negative images, and thg a period of association between centrally originating pre-
timing relations of a temporal learning rule governing the inhibitordictive signals and particular patterns of sensory input (Bell et
synapses. These results may be generalized to other adaptive sysigm$997a). Synaptic plasticity at excitatory synapses has been
in which plasticity at inhibitory synapses obeys similar learning rU|ea'em0nstrated experimentally in the ELL (Bastian 1998; Bell et
al. 1997c; Bodznick et al. 1999). A previous modeling study
has shown how this cellular level plasticity can yield the
system level adaptive properties of the ELL (Roberts and Bell
The importance of plasticity at inhibitory synapses has on000). The ELL is rich in inhibitory neurons and inhibitory

recently been recognized. The restructuring of the cortic§napses. Although plasticity at these inhibitory synapses has
somatosensory maps following lesions or changes in use, {3j; yet been demonstrated, an adaptive system level function
example, has been found to be dependent on the presencg,pfhe structure as a whole, the well demonstrated plasticity at
GABA activity. This observation lead to the conclusion thal, citatory synapses, and the presence of extensive inhibitory
the restructuring involves changes in the strength of inhibito eractions within the ELL suggest that this region is a good

synaptic input (Jacobs and Donoghue 1991; Lane et al. 19 : . : I oY
Mower et al. 1984). Similar results have been found in thé rr:g;jt?;eplfsteiéfti;ﬁme the potential contributions of inhibitory

inferior colliculus of the barn owl where the sensory mapssy
integrating auditory and visual stimuli converge (Zheng and
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Mormyrid electrosensory system signals converge on medium ganglion cells, where basilar

Mormyrid electric fish have an electric organ in their tail thﬁ:ndrltes receive the afferent inputs via interneurons in the

generates a brief pulse of electric current, an electric org

discharge (EOD). The EOD generates electric field pulses

the near vicinity of the fish in response to a centrally originat-

ing motor command. The fish can navigate without vision bﬁ/e
e

detecting distortions caused by external objects in its s harge. Since the fish generates the signal, it might be advan-

generated electric field (Bastian 1986). tageous to develop an adaptive filtering mechanism that elim-

Mormyrid fish have three cIasse; of electroreceptors that &tes the predicted electrosensory image to emphasize subtle
used for three different purposes: mormyromasts, knO"en?{évelties in the environment

gans, and ampullary receptors. Mormyromasts are used foﬁ'he MG cell responses adapt to eliminate the predicted

B o oo rcton < JEcEsensary mage vithin he sensory Signal (Bel 1962)
' ecordings near fibers known to excite granule cells that

ampullary receptors are used to sense the low-frequency gigie -t into the molecular layer as parallel fibers suggest that
ternal fields that all animals, electric and nonelectric, gener Sir responses to the corollary discharge are not simultaneous,

n lchr?mV;?te;fferent fibers from mormvromast and am ullarbut are distributed in time following the command signal (Bell
y y P tal. 1992). Corollary discharge timing information of the

electroreceptors terminate in separate regions of the CorteXe?éctric discharge arrives through parallel fibers, so a likely

the electrosensory lateral line lobe. The ELL is a laminal,,jiqate for adaptation is the synapse between the parallel
structure, and neurons of interest for this study, the medi ers and the apical dendrites

ganglion (MG) cells, have their cell bodies in the ganglion cel he synaptic efficacy of the parallel fibers onto the MG cells

layer (see Fig. 1). These neurons have a large dendritic treehg been shown to change depending on the relative timing of

aPinf" dendrites_; that reach into the r_nolecular layer. '_I'here t presynaptic volley evoked excitatory postsynaptic potential
receive synaptic contact from excitatory parallel fibers angpgp)"5nd the postsynaptic broad spike (Bell et al. 1997¢).
'rg?ék:gdrytc')n;esmggg rt]s ctgl(las I?(r;grgitt g?pgilaggg 69vag<]all(<:hetar Ihe synaptic efficacy is depressed following a pairing period in
. ; . o ’ hich the postsynaptic spike follows the beginning of the
1996). Th's study is restricted to t_he region of the ELL COMeEBSP within a narrow time window of about 50 ms. This effect
th?_\f recrec;\i/nes a}fp%”f‘gy recﬁe%tocr"mputf MG cells reveal tWis referred to asassociativedepression. If the postsynaptic
¢ ecof 'ﬁs _O € cell bo Sf 0 | Ce'li cvea K road spike occurs at any other delay, then the synaptic effi-
YPES O SPIKES, Aalrow, presumaniy axonal, SpIKe IS EVOKEG. .y is enhanced. This increase does not depend on the occur-
by moderate depolarization, and a largead spikes evoked - o o0 of the postsynaptic spike and is referred to@sasso-
at stronger depolarizations. Field recordings suggest that Lﬁgtive enhancement. Modeling studies have shown (Roberts
broad spikes propagate into the apical dendrites of the mo'%?fd Bell 2000) that the exact form of the learning rule is critical

ular layer (Grant et al. 1998). for the system level adaptive function of the ELL’s ampullary

The motor command that initiates an EOD originates in ”}% ion. If the experimentally established learning rule is used
command nucleus and traverses the spinal cord to the electfi

. ; . . in the model, then the parallel fiber inputs adapt to generate a
organ. Simultaneously, a corollary discharge signal projects

X ; . 8gative imag®f the previously paired sensory input. Adding

:ir:)en IEfI!_OLI’T:q[I‘I]gteI‘reSC%C;t;VI‘I;h (g]:"a{EéghtBﬂﬁcgtOZangéé)'ntl‘_)r:gglﬁs negative predlctable component to the actual input elimi-
' : ' ffates modulation of the MG cell responses to predictable

electrosensory signals. If other learning rules with other forms
of temporal dependence on the relative timing of pre- and
postsynaptic events, are used, then the model demonstrates that
the negative image is not as faithful a copy of the original
sensory input because the learning is dynamically unstable
(Roberts and Bell 2000).

A similar adaptive filter system has been found in another
electrosensory system. In the gymnotid ELL, fibers carrying
............................ proprioceptive information adjust their synapses in a way that
can cancel the predictable changes in electroreceptor signal
"""""""""""" intensity due to bending of the fish’s body (Bastian 1995). In
X\V addition, experiments on synapti.c p!asticity (Bastian 1998)

@%gﬁ% suggest that some of the adaptation is caused by plasticity at
o o inhibitory synapses.
Fic. 1. Neural organization. Cellular organization of the electrosensory .. . . .
lateral line lobe (ELL) is shown. The medium ganglion (MG) cells, with cell Slice experiments in the m,ormyr}d ELL have SqueSted but
bodies in the ganglion cell layer, have apical dendrites that reach into th&t yet demonstrated plasticity at inhibitory synapses (Bell et
molecular layer and basilar dendrites that invade the granular layer. Paraéiél 1997b). The associative depression of the EPSP evoked by
e e S oy s onmos s oSy parslel foer stimlus appeared to be accompanied by an
ha?/e exci?atory’ synapsge onto MG cells and stglate cells. The steﬁlate cellsﬁ reasein the_ inhibitory postsynaptic po_te_ntla_l (IPSP) e.VOked
inhibitory and synapse onto MG cells. Electrosensory information from piy the same stimulus, and the nonassociative increase in EPSP
mary afferents reaches the MG cells through interneurons in the granule lagize appeared to be accompanied by a decrease in the IPSP

ranular layer, and the apical dendrites receive corollary dis-
arge inputs via the parallel fibers and stellate cells in the
lecular layer (Bell et al. 1992).

Mormyrid electric fish can sense the subtle external electric
Ids of interest over the background of its own electric dis-

Granular layer
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(Fig. 2A). These changes appear to be due to plasticity ateach pointin time. The total membrane potential is a combination
inhibitory synapses, but could also reflect an IPSP of unchar®jthe noiseless potential with a background noise term representing

ing size that is masked or unmasked by accompanying Chang@gorrelated synaptic activity. If the total membrane potential exceeds
in the EPSP. specified threshold, a spike is generated. This modeling approach is

. . .. gj
The present study explores the hypothesis that p'aSth'tylfggz) that has been used to study the auditory system in barn owls

indeed present at inhibitory Synapses in the ELL. and examlrt%%rsmer et al. 1996). The MG cell model has two thresholds: a lower
the consequences of such plasticity. The learning rule thatygeshold that generates a narrow (axonal) spike, and a higher thresh-
assumed to control inhibitory plasticity follows from the hyvuid that generates a broad (dendritic) spike. Only the broad spike
pothesis that pairing delays between pre- and postsynapiifuences synaptic plasticity.

spikes that cause the EPSP to decrease cause the IPSP Two time scales are of importance to the model: a fast scale and a
increase and pairings at other delays that cause the EPSBIdw scale. The fast scale characterizes the response of the MG cell to
increase cause the IPSP to decrease. The main feature of ffigEOD over the course of tens of milliseconds and is limited to the
form of plasticity is that it follows the same timing as theluration of each electric EOD. The slow scale represents the adapta-

learning rules for excitatory synapses, but in the opposi’f@” of synaptic strengths QUe to synaptic plasticity over the course of
direction (see Fig. B) ’ several minutes and lasting many EOD cycles. To represent these

processes independently, we separate these time scales into two sep-
arate components. Thecomponent represents the time in millisec-
METHODS onds following the EOD, and thecomponent represents the number
. of EOD cycles. Thex-component is discretized with, = n(Ax) for n
Stochastic model neuron an integer. In the simulationax = 1 ms, and the number of time
The model of the MG cell is constructed to represent the simpleePsSN = 150. Thus the dynamical variables in the model are
observable dynamics in response to externally applied synaptic ingigPendent on two temporal variables. For instance, the noiseless
This simplified model allows for analytic results that confirm conclulnémbrane potential, denoted byx,, 1), is a function of bothx, and
sions drawn from computer simulations for a wide range of parameterThe probability of a broad spike during cycleat time x, is a
settings. threshold (sigmoid) function of the noiseless membrane potential.
The MG cell is modeled as a single compartment, stochastic thre¥Mith thresholdd, and noise parametgr, the spike probability is given
old device. All synaptic inputs are summed to yield a “noiseled®y the expression
membrane potential” that represents the excitation level of the neuron

ilar to the “spike response” model (Gerstner and van Hemmen

1
O U = expl— Vi, © — 6} ?

>

For low membrane potentials, the spike probability saturates near
zero, and for high-input levels, the spike probability saturates at unity.
The instantaneous spike frequency is obtained by multiplying the
spike probability by the maximum spike frequency. The model con-
tains no relative refractory period, so the maximum spike frequency is
the inverse of the absolute refractory period. The refractory period
used in the model is 2 ms for narrow spikes, and 30 ms for broad
spikes (C. Bell, personal communication).

N

Postsynaptic Potential (mV)
o

Network architecture

Time following spike (msec)

The model MG cell receives three inputs (see Fig. 3): parallel fiber

B and stellate cell postsynaptic potentials representing inputs from the
molecular layer, and deep layer inputs that represent the electrosen-
o sory image. The electrosensory imayg(x.), is based on recordings
= 10 from the ampullary region of the ELL and is designed to duplicate the
2 s MG cell response to an EOD before adaptation takes place (Fig. 3).
2 oA The parallel fiber inputs are modeled as a time-delayed series of
g 0 ! \—I l_ excitatory postsynaptic potentials. Each EPSP begins at a specified
= \/-","'_’_ delay following the beginning of each EOD cycle. The sequence of
o R A delayed EPSPs is represented in Fig. 3 as the weighted parallel fiber
=10 . inputs each beginning at a differexdelay &,, X5, X5, . . .). There is

one EPSP beginning at each discretization stepThe waveform,
E(x,), used for all the EPSPs is shown in Fig.The EPSP waveform
was obtained from recordings in vitro of MG cells while inhibitory
FIG. 2. Synaptic plasticityA: the change in postsynaptic potential follow-inputs were pharmacologically blocked (Grant et al. 1998). The con-
ing pairing of a parallel fiber stimulus with postsynaptic broad spikesce a  ripytion of each EPSP to the membrane potential is obtained by
shows thg postsynaptic potza_ntlal foII_owmg atest stimulus to the parallel fib ltiplying the waveform by a synaptic weight(x.., t). The slow
before pairing. After 360 pairings with broad spikes that precede the para(lli%'le scalet-dependence is due to the adaptability of the synaptic

fiber stimulus by 20 ms, the test stimulus produced a postsynaptic potentlal. ! . g
shown bytrace b. After another 360 pairings, but this time the broad spikeg"e'ghts resulting from the rules of synaptic plasticity. The total

follow the parallel fiber stimulus by 20 ms leads to a postsynaptic potent@@ntribution of the parallel fiber synaps&§;(x,, t), to the membrane
produced by the test stimulus shown trgce c. Modified from Bell et al. potential is the sum of all individual contributions

(1997b).B: temporal learning rules used in the simulations. The solid trace

shows the change in excitatory synaptic weight induced by the delay between N

the beginning of the excitatory postsynaptic potential (EPSP) and a broad Vi (Xn, 1) = E W(Xm, E(Xy — X) (2
spike. The dashed trace represents the same for the inhibitory weights. m=1

o 0
Delay from pre- to
postsynaptic spike(msec)
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Corollary discharge signal

;
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ion channels, thereby preventing the excitatory current from depolar-
izing the site of spike initiation (Koch et al. 1983; Rall 1964; Tuckwell
1986). The effects of shunting inhibition are compared with calcula-
tions with simple linear inhibition to determine what effects, if any,
shunting has on the learning dynamics.

Since the effect of shunting inhibition is to reduce the effective

|/ ) injected current from the excitatory synapses, inhibitory synapses will
reduce the overall weight of EPSPs during the time course of the open
inhibitory receptors (see Fig. 4). For this purpose we use the open time
of GABA , receptors (Otis and Mody 1992) because IPSPs in the ELL
are mediated by GABA. The time course of the IPSP differs from the
time course of the normalized conductan@é,,), due to the electrical

Parallel fiber and stellate cell inputs.

B properties of the neuron. This algorithm for this representation of the
N el 40 shunting has been chosen because it is in the spirit of the spike
Electrosensory 20 response model, that is, the model yields the change in the response of
N S v — the postsynaptic neuron’s output due to presynaptic spikes.

FIG. 3. Model organization. The model MG cell is a threshold device with The shunted weightw(x,, t.)’ |_s_r_educed by an _am_ount that_ls
noise. If the combination of the noiseless membrane potential plus Gaussigpendent on the strength of inhibition. Thus shunting is proportional
noise is greater than a threshold, then a spike is generated. The model genet@iHfae inhibitory weightsy(x,, t). Since these inhibitory synapses can
2 types of spikes: narrow spikes and broad spikes. The broad spikes areadhange in a use-dependent manner, the amount of shunting also
postsynaptic events that are required for associative synaptic plasticity. Talmanges under synaptic plasticity of inhibitory synapses. A scaling
types of inputs are considered: electrosensory inputs that represent the elefdiétor, o, is used in the model to control the maximum amount of
organ discharge (EOD) signa¥/(x,), and adaptable synaptic inputs thatshunting by the inhibitory synapses. Excitatory synaptic weights are
re_Eresent pEalgaSII;I flbﬁr and st:ellate cell |r_1p|uts. Each pgrgllel flggrsllgput Cqduced by shunting over the time course of the GAB&ceptors’
tributes an to the membrane potential represented by an wave f ;
weighted byw(x,, t). Each stellate cell input contributes an inhibitory postsyn eh time, so that the shunted weights are computed by
aptic potential (IPSP) to the membrane potential represented by an EPSP
waveform weighted by(x,, t). The noiseless membrane potential is the sum
of all inputs, sensory and synaptic.

Ws(xnv t) = E W(Xnv t)[l - O"U(va t)G(Xm - Xn)] (4)

m=1

There are many excitatory and inhibitory inputs distributed along the
. ) o dendrites in the molecular layer, and there is no preferred spatial
The sum runs over the time interval from the beginning of the EOf3¢ation of the stellate cells throughout the apical dendrites of the MG
cycle to the most delayed EPSP that is correlated with the citte (' ceis. Thus the spatial component of shunting is ignored in this model.
150 in the simulations). The EPSP waveform is normalized to hayjs method of including shunting inhibition into the model has been
unit area, such that,E(x,) = 1. o . compared with a two-compartment conductance-based model using
The stellate cell inputs are modeled similarly to the parallel fibghe neural modeling software package NEURON (Hines and
input;, but as a series of IPSPs. The contribution of each IPSE is e nevale 1994). In addition to Hodgkin-Huxley currents, one com-
negative of the product of an IPSP waveforni(x,), with a synaptic partment included synaptic currents from a kinetic modet-ainino-
weight, (X, 1). The IPSP waveform is positivé(k,) = 0 for allX,]  3_nhydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and GABA
and is based on the difference between a postsynaptic potenfialeptors (Destexhe et al. 1994). The second compartment was used

measured with and without inhibition blocking agents from experisr membrane potential measurements, and there agreement between
ments in vitro (Grant et al. 1998). However, in the analyses ande methods was satisfactory.

simulations, IPSP initiations are not always delayed by regular series
of intervals that are correlated with the EOD. Because the timing of
IPSP inputs from stellate cells with respect to the EOD has not yet
been experimentally confirmed, the model is used to determine the
effects of different delay schemes. The contribution for all of the
stellate cellsVg(x,, t), to the MG cell membrane potential is the sum
of all of the individual inputs (withN = 150 in the simulations)

Ve 1) = = D 00k DI[X0 = Xy — 8(1)] ®

m=1

where thex, are identical to those dg. 2, X, — nAx (Ax + 1 ms in
the simulations). The delay offset terém(t), is used to vary the delay
of each inhibitory input relative to the beginning of each EOD cycle.
If the IPSPs are perfectly correlated with the EOD cycle as the EPSPs,
thend,(t) = O for all t. However, if there is no correlation, thép,(t)

is assigned a random number for each cycle within the range of other
correlated inputs. The IPSP waveform is also normalized to have UMEE
area,z l(x,) = 1.

20 | 40
Time following spike (msec)

Normalized waveform amplitude
154 ¢
>
= =

G. 4. Postsynaptic waveforms. Three waveforms that are used to deter-
e the synaptic input in the simulations. The scale for the postsynaptic
potentials (PSP) is on thHeft and the scale for the shunting current is on the
right. The PSP units are normalized such that the integral of the functions is
Shunting inhibition unity. The EPSP waveforng(x,), is given by the solid trace (Grant et al.
. . . 1998), the IPSP wavefornh(x,), is given by the dashed trace. The waveform

The linear summation of EPSPs and IPSPs given above may Rgresenting the shunting current induced by inhibitory synapses in dimen-
reflect the complete contribution of inhibitory synaptic inputs. Currerfonless unitsG(x,) = x, exp(—x./2), is given by the dotted trace (Otis and
from the excitatory synaptic inputs can be shunted through inhibitokjody 1992).
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The noiseless membrane potential is the sum of all inptes.( TABLE 1. Model parameters used in simulations

2-4

max
N Simulation

15 01 % (Vel) g aw av Bw Bz/
V(% 1) = Vor (X, 1) + VKo, 1) + V%) = 2 Welkmy DE(Xy = Xp)
=1 Fig. 5,AandB 2 80 1.0 O 0.003 0.003 0.8 0.8
Fig. 5,AandC 2 80 10 O 0.003 0.002 0.8 1.2
N Fig. 6,AandB 2 80 1.0 O 0.003 0.002 0.8 1.2
= > 0 DI = X — (D] + Vei(X) (5) Fig.6,AandC 2 80 1.0 0 0.003 0004 08 0.4
m=1 Fig. 7,AandB 2 80 18 O 0.003 0 0.8 0
Fig. 7,AandC 2 80 1.8 O 0.003 0.003 0.8 0.8
The nonlinear shunting effects can be removed by settirg0 in the  Fig. 8, A 2 80 1.0 O 0.0001 0.0001 0.02 0.02
expression for the shunted excitatory synaptic weiu. (4). Fig. 9,AandB 2 80 1.0 0.2 0.003 0003 08 08
Fig. 9,AandC 2 80 1.0 0.2 0.003 0.003 0.8 0.8
Temporal learning rules The simulations are referred by their figure numberisuLTs All values

. . . are_normalized so that the synaptic weights are in the range, [0.0, 1.0]. The
A previous study of this system characterized the consequence$,dh spike threshold, is given as a percentage of the maximum membrane

synaptic plasticity at excitatory parallel fiber synapses (Roberts aggtential. The maximum membrane potential is the maximum parallel fiber
Bell 2000). The learning rule governing synaptic plasticity was base@ntribution (normalized to unity) plus the maximum electrosensory image,
on an experimentally determined learning rule and depends on thex (V).

precise timing of the pre- and postsynaptic spikes during repetitive

airings. These experimentally determinenporal learning rules . . .
Porm '?he basis of trr)1e model’syimplementatign of synapt?c changﬂ?.rlze the genefa' dynamics of the system independent of exact pa-
fimeter choices.

Duri h EOD cycle, the MG cell is activated by different e ; . . .
uring each EOD cycle, the ce IS aclivated by drieren’ para Computer simulations were used to illustrate the dynamics of the

fibers in a series of delays indexedXyy The change of the excitatory . 4

synaptic weightsAw(x,, 1) is functionally dependent on the tims,, system and to test explicit ex_amples of parameter choices. The above

of a broad spike in the postsynaptic neuron following the beginning [ﬂrmahsm was |mplemen_ted In a custom software. package that could

each cycle. During each EOD cycle, there is a nonassociative ggnerate the relevant variables and display the spike output of the MG
ffl(the simulation software can be obtained by anonymous FTP from

hancement of each synapse that is set by the nonassociative lear
rate parametere,, |f); pF())stsynaptic brogd spike occurs during Lee .edu/ftp/reed/users/proberts). Edge effects were handled by ap-

narrow time window following the beginning of the EPSP, the syrp.ly'ng Pe”Od'C bogndary conditions to the_] component. In the
aptic weight is reduced proportionally to a learning functibg(x.), simulations, the noiseless membrane potential was computed for each
scaled by the associative learning rage, EOD cycle. The. weights were randoml.zed in a uniform dlst_rlbutlon

within 4% of their mean value. The assignment of broad during each
time step following the command signal was based on the computed
spike probability Eq. 1) using a pseudo-random number generator.
whereL,(x.) is normalized to have a unit area. Thus after each EOP€ Synaptic weights were updated following each cycle as deter-
(at timet) the timings of the broad spikes are used to determine tféined by the timing of the broad spikes and the learning ries,
change in synaptic weights. The new magnitudes of the weights &and7.

used in the next EOD (at time+ 1) to compute the broad spike A measure of the sensory image cancellation was required to
probability. compare different conditions and their effects on the system. We used

The change in the inhibitory synaptic weightsy(x,, t), are simi the mean square contingenqﬁ(t)/N, to obtain thg difference be
larly treated, but with opposite sign and a different learning functiofVéen the membrane potential(x,, t), and the time average of

AW(Xm t) = oy BWLW(Xb - Xn) (6)

L,(x.) V(x,,, ) over the cycle lengthy(t)
Av(Xy, 1) = —a, + B,L (X — Xp) ) PO 1N [V t) — W]z
XU 1 VG D = VIO 8
N N n:El V(t) ®)

Previous studies of the requirements for dynamical stability on the
learned sensory image of this system (Roberts and Bell 2000) suggest - N . . .
that the learning functions should be equivalent to the postsynagﬂéere_v(t) = (IN) = V(x,, 1), andN = 150 is the number of time
potential waveforms: the EPSP waveform for the excitatory synapsE€PS in the simulated EOD cycle. Low valuesy8(t)/N indicate an

L,(x) = E(x), and the IPSP waveform for the inhibitory Synapse§v’erage spike frequency that is nearly constant during the EOD cycle

L (x) = I(x). This form of the learning function will be relaxed in fePresentative of sensory image cancellation by a negative image
the simulations to test for measurable instabilities. The match betwdnerated by the synaptic inputs of parallel fibers and stellate cells.
the temporal learning rule and the EPSP waveform means that the

occurrence of a broad spike during the postsynaptic potential resultgip s y| 15

an associative weight change for that synapse.

To make comparisons with experimental results on the rate of A spike response model (Gerstner and van Hemmen 1992)
adaptation, it is essential to use realistic values for the parametersph medium ganglion cell was used to determine the adaptive
the learning rules. Realistic values for the synaptic learning rates perties of its spike output due to synaptic plasticity. The
be obtained from recent data that plot the time course of EP3Rypitude of both EPSPs and IPSPs would change depending
enhancement and depression in slice preparations for different delgjsthe relative timing of pre- and postsynaptic spikes. The

between the pre- and postsynaptic stimulations (Han and Bell 199 - . .
These data constrain the valuesogf and ,,, the learning rates for arning rules would drive the output broad spike frequency to

non-associative enhancement and associative depression. an equilibrium level that is a function of the synaptic learning
The dynamics of the system were investigated by calculating tFates. ) ) ) -

average weight change in a continuum approximation of the formal-As shown in thexprenpix, the final broad spike frequendy,

ism presented above (cferenpix). The analysis was used to characof the model neuron after adaptation takes place is given by the
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sum of the non-associative learning rates divided by the sum of A
the associative rates 3 70N
S0 X <
f:aWJra” ©) < -
Bu+ B. -{.;‘530_ ______
If the learning rates for excitatory and inhibitory synapses are %
equal ¢ = o, = a, andp = B,, = B,), then this expression 2297
reduces to the ratio of the non-associative learning rate to the 2
o . : ; 5 10 .
associative learning ratex(3) as derived previously (Roberts 2 T T T
and Bell 2000) for plasticity at only excitatory synapses. B 0 40 8 120

However, if the learning rates differ, then the average of the
weights continue to drift even though the broad spike proba-

bility has attained a constant value,The ensemble average %

change in the synaptic weights is (S@®ENDIX) Zo.
AW, D) = (Ao, 1)) = ZPr ~ %P 10 ‘CE:
(AW(Xn, 1)) = (Ao(Xy, 1)) = B+ B, (10) &

The excitatory synaptic weights drift at a rate equivalent to 0 T — T
the drift of the inhibitory weights, confirming that the broad C 0 40 80 120
spike probability remains constant. The drift-rate expression ]
implies that the synaptic weights saturate at their highest values =
if the ratio o, /B,, iS greater than the ratia /B,, and the §> 7
weights saturate at their lowest valuedf/B,, is less than 205
a,lB,. B '

Uncorrelated inhibitory synaptic input ® ]M&AMAMMAMM
0

If the stellate cells in the molecular layer do not fire in 0 40 80 120

response to the parallel fibers that are time locked with the Time following EOD (msec)

EOD, their .mqu wil t?e u.ncorr(.alated with the electric organ FIc. 5. Randomly timed IPSPs: membrane potential and weightshe
cycle. The first simulation investigates whether any measurafifiseiess membrane potential generated by simulations following 600 cycles
effects would result from synaptic plasticity of uncorrelatedf adaptation to a “electrosensory stimulus” represented by the dotted trace.
stellate inputs. The EPSPs arrive in a delayed series of addje solid k(t)/N = 1] trace shows the noiseless membrane potential gener
able inputs for up to 150 ms following the onset of the EQL§ed by the weight configuration . The dashed tracexf(t)/N = 63] is

. .~ —generated by the weight configuration@fB: weight configuration following
However’ eaph of th,e 150 stellate cell-induced IPSPs a”'Veeéé cycles of adaptation where the ratio of the learning rates are equal.
a different time during each EOD cycle. The deldy,t), Excitatory synaptic weights are represented by the dotted trace, and inhibitory
assigned to each IPSP is randomly distributed throughout theights by the solid trace. The weights are labeled by the presynaptic spike
first 150 ms of each cycle, with one IPSP beginning at eatime following the beginning of the EOD cycleC: weight configuration

time step. When this delay isdependent it changes with eacﬁollowing adaptation with an inequal ratio of the learning rates.

EOD cycle. Thus the IPSPs are here not correlated with thges of the excitatory (parallel fiber) synapses were set equal
EOD. . N . to the learning rates of the inhibitory (stellate cell) synapses.
_In this case of randomly timed inhibitory inputs, the plasthe input of the parallel fibers plus stellate cells cancel the
ticity of inhibitory synapses gdds no observable dynam|c§ §%nsory input §%()/N = 1]. The dashed line in Fig.Sshows
the system other than contributing to the background noige resulting noiseless membrane potential at 600, where
The rate of adaptation to qhan_gmg sensory stimuli is the same < a B, Here the weights have saturated at their lowest
and the range of adaptability is the same. _ value (Fig. &) so that the inputs are unable to cancel the
If the plast|C|ty_|_s only at excitatory synapses, it can bﬁighest peak of the sensory imag€®)/N = 63]. Thus syn
shown that conditions must be imposed on the excitatofyyic piasticity at inhibitory synapses that have a random delay
learning rule to ensure stability of the negative image. Thegg, he detrimental to the fidelity of the negative image gener-

must be a nonassociative enhancement component to the legry py the parallel fiber inputs unless the learning rates are
ing rule, and associative depression must be close to the fog ly tuned.

of the epsp waveform (Roberts 2000; Roberts and Bell 2000).
If the inhibitory .s.ynaptic inputs ayrive at randlom delays, the@orrelated inhibitory synaptic input
the same conditions on the excitatory learning rule apply as
without inhibitory plasticity. When inhibitory inputs are correlated with the EOD, in

An interesting result of inhibitory plasticity with randomlycontrast to the uncorrelated condition considered in the previ-
timed inhibitory inputs is that saturation of the weights causeaxlis section, plasticity at inhibitory synapses can contribute to
by synaptic drift Eq. 10 distorts the negative image of thethe formation of a negative image. In particular, plasticity at
sensory pattern. The noiseless membrane potentials for timbibitory synapses allows the sum of IPSPs to complement the
simulations are shown in Fig.2A5 where the solid line repre- contribution of the EPSPs when the weights of excitatory
sents the results of a simulation tat= 600 and the learning inputs are saturated.
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The results of two simulations demonstrating this phenom- A
enon are shown in Fig. 6. The noiseless membrane potential is 3
shown by the two horizontal traces in FigA.6In the first 2 ] oo
simulation (weights shown iB) the ratio of learning rates is FAOTN S e e — —
a, /By < «,lB, After 400 cycles, the inhibitory synaptic |5 _W/
weights are reduced to their lowest values except for an inter- S0l =7

val between 60 and 85 ms following the command signal. It is
during this interval that the IPSPs contribute to the total mem-
brane potential during the depolarizing sensory input (the peak
of the dotted trace in Fig. 4. This interval of increased

inhibitory current subtracts the residue to form a negative 4
image that the excitatory current cannot effect because its

W Membrane
o

weights are saturated at their zero level. During the remainder = E . .

of the EOD cycle, the excitatory inputs adjust to cancel the 2057 " i ,
sensory image. This effect is independent of the starting con- 5 . et
ditions for the weights. On possible advantage of this satura- . :

tion effect would be to minimize he synaptic output required to
generate a negative image, thereby reducing the use of synaptic
resources, such as neurotransmitters.

The second simulation shows the result of setting the ratio of
inhibitory learning rates less than the excitatory rategg,, <
a,/B,- In this case, the weights saturate near their greatest

@)

o

Synaptic weight

1~
(=)
‘ ;

T —
40 80 120
Time following EOD (msec)

99
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1
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i

FIc. 7. Range of adaptabilityh: the “electrosensory stimulus” (- —-) has

) been increased by a factor of 7/4 compared with the previous simulatiofs (
- . . The curved §*(t)/N = 321] solid trace shows the noiseless membrane potential
0 40 80 120 generated by the weight configuration®f The flat p3(t)/N = 2] solid trace
is generated by the weight configuration@fB: weight configuration follow-
ing 400 cycles of adaptation without plasticity at inhibitory inputs (—). The
excitatory weights {- -) are saturatedC: weight configuration following 400
4 -, cycles of adaptation with inhibitory inputs correlated with the EOD cycle.

—
o
1

T Membrane potential (%Vinax) 2>

values (Fig. €). The inhibitory synaptic weights are reduced

. during the interval where they contribute to canceling the
. - /"\\ LR hyperpolarizing sensory input. In this case, the system maxi-
0 — - , mizes its use of synaptic resources.

Synaptic weight
e
2

@)

Range of adaptability

'\/\,N“ \7/ I Inhibitory plasticity introduces adaptable postsynaptic po-
" : T tentials that can allow the neuron to generate a negative image
) to cancel a much broader range of sensory input intensity. This
- is seen analytically in the added term of the summation over
i IPSPs Eqg. 5. The first two terms on the right hand side must
0 . . . combine to level the variations of sensory imayg(x,,), over
0 40 80 120 X, Inhibitory plasticity allows the weights of the IPSRgx,,
Time following EOD (msec) t), to adapt so that hyperpolarizing regions\oj(x,) can be
) o o ) canceled for higher peaks in the sensory image. Since there are
Fic. 6. Saturation of synaptic weight&: in this simulation, the IPSPs are 1,qra inputs to adjust through synaptic plasticity, a greater
a series of delayed inputs that are correlated with the beginning of each cycle, - - .
The dotted trace represents the “electrosensory stimulus” that is paired with Eﬁ@ge of input mtensmeg (_:an be Canceled' Although _the adap-
delayed series of EPSPs and IPSPs. The sgfith)[N = 1] trace shows the tIve range to hyperpolarizing sensory input could be increased
noiseless membrane potential generated by the weight configuratirToe  with the addition of more excitatory inputs, the increased range

dashed tracef(t)/N = 1] is generated by the weight configuration@fB:  of adaptation to depolarizing sensory input requires plasticity
weight configuration following 400 cycles of adaptation withB, < «, B,

The inhibitory weights (—) are reduced to their lowest values except where tﬁg mhlbltqry synapses. . . . .
excitatory weights {--) are saturatedC: weight configuration following 400~ 1WO simulations depicted in Fig. 7 demonstrate the in-

cycles of adaptation withy, 8, < « By, creased range of adaptability. The first simulation increased the

Synaptic weight
o
T
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gain of the sensory input/.(x,) (:--, Fig. 7A). The system factor, andr is a decay constant] to the plot, we find that the
could not adapt to the large stimulus gain. The total membradecay constant for the simulation with excitatory plasticity
potential is seen to deviate from a flat line (———, Fi@).7 only is 7 = 641 cycles. For the serially delayed, inhibitory
Under these conditions, the cancellation of the sensory input pigsticity simulation the decay constantss,, = 168 cycles.
the molecular layer inputs is incomplete. The range of the These decay constants can be converted into the rate of
system’s adaptability is limited because the inhibitory weightglaptation in the ELL by considering that in preparations in
were constant i Saturation of the excitatory synaptic weightsivo, spontaneous electric organ discharges occur at intervals
can be seen in Fig.B of 150—400 ms. Thus the ranges of decay constant values
The second simulation is run with the larger gain, but theredicted by our simulations atg = 1.6—4.3 min andy_, =
IPSPs are now plastic and correlated with the EOD cycle aoth—1.2 min. The adaptation rate measured by the difference in
EPSPs (Fig. €). Here the inhibitory inputs are able to conspike rate between the pause and burst phase of the electric
tribute to the formation of a negative image so that the totatgan cycle is plotted in Fig.B Although this is not the same
membrane potential is nearly constant during the EOD cyaigethod of measuring the deviation from a constant spike rate

(Fig. 7A, solid trace). as oury?(t)/N analysis, the rates are comparable because they
differ only in an overall scale factor and offset parameter.
Rate of adaptation Fitting these graphs to an exponential curve yields the decay

constants,r,,; = 0.9 min andrg,,, = 0.5 min. Only the

The system level rate of adaptation measures the timesiinulation with a series of delayed synapses and inhibitory
takes from an abrupt change in the predictable sensory imagasticity has a range af values that is consistant these data.
to be canceled by the generation of a negative image. AsHowever, there is a discrepancy between how much the
derived in thearpenDIX, the rate at which deviations in thedecay constant is reduced by inhibitory plasticity as predicted
membrane potential flatten is a monotonic increasing functitwy the analysis presented in therenpix and the simulation.
of both excitatory and inhibitory learning ratésq. A16). If a The analysis predicts that = 27, ,, but the exponential fit of
is the ratio of inhibitory learning rates to excitatory learninghe simulation yieldsz = 3.87,,. The reason for this differ
rates & = «, /a,, = B,/B,), plasticity at inhibitory synapsesence is that the analysis linearized the equation for synaptic
increases the rate of adaptation by a factor of-(&) . change by expanding the broad spike probability near the

A simulation was run with the inhibitory learning rates, (constant) equilibrium levelEq. A10). Thus we can only
andpg,, set equal to the excitatory learning rates based on thepect the analysis to be accurate when the system is near the
physiological values for excitatory plasticity (Han and Beltonstant spike probability. If we fit only the regions of the
1999). The value of(t)/N is plotted in Fig. & for three graph in Fig. & where the mean square contingenét)/N <
conditions of the inhibitory synapses: no plasticity-}, plas- 40, then we find the relationship between the decay constants
ticity according to the learning rule in FigB2 and random to berz = 2.1r,, bringing the analysis into close agreement
timing with respect to the EOD (—), and plasticity with thewith the simulation.
timing in a series of delays following the beginning of the EOD Another important result that follows from calculations of
(——-). The adaptation time course for the serially delaydde decay constant, is an analysis of instabilities in the
plastic inhibitory synapses is considerably shorter than thearning dynamics. If the associative depression learning func-
other two schemes. Fitting an exponential curde + B tion does not closely resemble the postsynaptic potential, then
exp(—t/7), whereAis an offset parameteB is an overall scale oscillations can develop in the spike activity that interfere with
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Fic. 8. Rate of adaptatior: the mean square contingeng#(t)/N, measures the deviation of the noiseless membrane potential
from a constant during each cycle, thus measures the progress of adaptation over the many cycles. The solid (noisy) trace shows
the progress of adaptation from a simulation where the inhibitory inputs are plastic, but randomly correlated with the EOD cycle.
The dotted trace shows the progress with no inhibitory plasticity. The (faster adapting) dashed trace shows the result of both
inhibitory plasticity and ipsps correlated with the EOD cy@edata from 2 experiments in vivo. The solid lines show the response
to the command signal measured by taking average number of spikes between 20 and 60 ms after the EOD command, and
subtracting the average number of spikes between 60 and 100 ms. The dashed traces are best-fit exponential curves discussed in
the text. Figure modified from Bell (1982).
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the generation of a negative image (Roberts and Bell 200@)eights reduced by the inhibitory shunting as describe&dpy

We find this to be true of the learning rules for both thd. The results indicate that no new dynamics were introduced
excitatory synapses and the inhibitory synapses. Analyticallyy the addition of this nonlinear form of inhibition. No insta-
instabilities appear if the real part of the decay constant balities developed, and the rate of adaptation was unchanged.
comes negative [Re(dy < 0]. We have also used the simula- The main result is that the effective strength of the inhibitory
tions to test several timing relations for pairing of parallel fibénputs was increased because they not only reduced the mem-
spikes and postsynaptic broad spikes. Simulations were run lioane potential by subtracting the IPSPs, but also reduced the
4,000 EOD cycles; long enough for unstable oscillations teeight of the EPSPs. When the series of adaptable IPSPs were
develop. The window of associative depression was shifteddorrelated with the EOD cycle, the system generated a stable
different delays from the beginning of the EPSP for eaategative image to cancel the sensory input (FigA @ndB).
simulation. Instabilities developed for shifts outside the randgecause of the increased strength of the IPSPs due to shunting,
from —9 to 12 ms. These simulations have confirmed that vetlye larger depolarizing actions of the sensory image sensory
few learning rules are stable. Thus if there is inhibitory plagmage could be effectively canceled.

ticity in this system, the model predicts that only a narrow If the IPSPs were uncorrelated with the EOD so that each
range of learning rules will replicate the results of experimentBSP began at a random delay following the beginning of the

in vivo. cycle, then the excitatory inputs were unable to cancel the
sensory stimuli without saturating, as shown in Fig. Except
Shunting inhibition for the shunting effects, this simulation used the same param-

._.eter settings as the run that generated the data for Fig. 5. Thus
e shunting inhibition would require a greater range of the

. ) . Lon el NEYitatory synaptic weights to cancel the same magnitude of
dynamics were introduced by such nonlinear inhibition. S'”é'ensory gtin{uli.p g g

ulations were run for all of the above results with the excitatory

A DISCUSSION

033’40_ 2 S -2 ‘,\_ S Summary of results

-‘g ol The results presented here lend support to the hypothesis that
£ the inhibitory synapses from stellate cells to the medium gan-
® 20 glion cells of the ELL exhibit a form of plasticity that depends

§ on the timing of the pre- and postsynaptic spikes. These results
E 10 follow only if there are inhibitory inputs that are correlated
= 0 80 120 with the EOD cycle in a series of delays following the dis-

B charge. In simulations that include these inhibitory inputs

along with experimentally based learning rates for synaptic
plasticity, the system level adaptation to a change in sensory
stimuli occurs at a rate comparable to the rate measured in
experiments in vivo.

The reason that such a simple model can accurately predict
the system level rate of adaptation is that the learning dynamics
depend primarily on the synaptic learning rates and the timing
of broad spikes during each EOD cycle. The complex internal
C dynamics of MG cells do not contribute prominently to the

oo learning dynamics on the relevant time scale of 10—-100 ms,
. . ) except to ensure that a few broad spikes appear every cycle at
. . T - a rate that increases with depolarization.

' SN Our results show advantages to having plasticity at both
excitatory and inhibitory synapses. Advantages include an in-
creased rate of adaptation and an ability to adapt to a wider
range of stimulus intensities. These results of the model could
; o - s Mo be testgd experimentally by blocking inhibition in the ELL and

Time following EOD (msec) measuring the rate and range of adaptation of MG cells due to

o Effects of shunting inhibition: the noisel ) eni Ichanging electrosensory stimuli. In addition, the combination
FIG. 9. ects of shunting inhibitiorA: the noiseless membrane potential ; inhihi i ;
where the weight of the excitatory inputs are diminished by “currents” inducSeOJ excitatory plus mhlbltory plast|C|ty can prowde a means of

by the inhibitory synapses. The solig?[t)/N = 3] trace shows the noiseless [€gulating the overall synaptic current 'nleCted into the apical
membrane potential generated by the weight configuratioB. dfhe dashed der_ldrltes by taking advantage O_f the “drift .Of the synaptic
trace [(t)/N = 15] is generated by the weight configuration®fThe dotted weights when the ratio of the excitatory learning raies/g,,)

trace represents electrosensory infitweight configuration following 400 s |ess than the ratio of the inhibitory Iearning ratezs/(% )
cycles of adaptation with inhibitory inputs correlated with the EOD cycl P L - v
(excitatory weights are represented by the dotted trace and inhibitory weig Qdel’ these conditions the injected current will be reduced to

be the solid trace)C: weight configuration following 400 cycles of adaptationtn€ lowest level that is _Sti” capable of _SCU|pting a negativ_e
with inhibitory inputs randomly timed with respect to the EOD cycle. image to cancel the predictable sensory input. The actual ratios

o

Synaptic weight

ol

Synaptic weight
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of learning rates have not been measured experimentally fgpe of plasticity has been observed in the hippocampus (For-
inhibition, but one would not expect the values for excitatiotunato et al. 1996; Gupta et al. 2000). Slice experiments could
and inhibition to match exactly. be used in the ELL to isolate the inhibitory plasticity to the

The introduction of plasticity at inhibitory synapses insynapse from stellate cells onto MG cells. A paring paradigm
creases the number of storage sites for learning. Thus Similar to that used for excitatory plasticity (Bell et al. 1997c¢)
computational capacity is expanded by allowing temporal pateuld measure the change of IPSPs with glutamate blockers in
terns to be encoded and stored in the strengths of inhibitorytae bath. The presynaptic stimulation in the molecular layer
well as excitatory synapses (Kano 1996). In addition, plasticityould have to be strong enough to elicit an IPSP in the MG
at inhibitory synapses provide a wider-range control afell. This type of experiment could show if inhibitory plasticity
postsynaptic neuronal activity. We have shown this with ouweally exists in this system. However, it would be very difficult
model by the expanded range of adaptability acquired usitieliminate the possibility that there is also plasticity at the
inhibitory plasticity. synapse from parallel fibers onto stellate cells in vivo.

The benefits of inhibitory plasticity can only be reaped if the There is a theoretical argument against the relevance of this
inhibitory inputs are correlated with the EOD in a series datter type of plasticity to the effect presently investigated: the
delays. In fact, if the inhibitory inputs are not correlated witladaptation of MG cell responses to changes in predictable
the EOD, and the learning rate ratios are not perfectly equalectrosensory stimuli. The learning rules investigated here are
then inhibitory plasticity would reduce the effectiveness thieiggered by the timing of broad spikes in MG cells. The broad
sensory image cancellation. In addition, there is no increasgulkes are the carriers of information about the electrosensory
rate of adaptation, and the range of adaptation is actuadiymuli. For the synapses from parallel fibers onto stellate cell
reduced relative to what it would be without inhibitory synaptito change in concert with the synapses onto MG cells, one
plasticity, particularly if shunting inhibition is present in thewould need to hypothesize another information pathway to
model. signal the stellate synapse about the predictable aspects of

The study of uncorrelated inhibitory input reveals a situatioglectrosensory stimuli. Although it is possible that such a
where there is a gradual decay of inhibitory synaptic strengplathway exists, this would not lead to a parsimonious descrip-
that is counteracted by randomly distributed broad spikes rébn of the system dynamics with the known anatomy.
ative to stellate cell spikes. As seen in Fig. 5, this has the effectAnother possible limitation to the present model is the
of normalizing the inhibitory input. assumption that the stellate cells fire only once per EOD cycle.

The treatment of shunting inhibition in this study did nolNo recordings of identified stellate cells have been made in
introduce any new dynamics to the model. The shunting infsupport this assumption. As we saw in the results, completely
bition only increased contributions of inhibitory input relativaincorrelated synapses tend to adjust to a level that contributes
to that of excitatory input. With shunting inhibition there is noproportionally to the equilibrium broad spike frequency. If
only the linear contribution of the weighted sum of IPSPs, bthere were several uncorrelated stellate cell spikes per cycle,
also adivisive effec{Carandini and Heeger 1994) due to théut one spike per cycle was consistently at the same delay
reduction of the EPSPs by a multiplicative factor. Howevefollowing the EOD, then that one spike would be able to drive
because the stellate cells are distributed diffusely throughdhé synaptic input to cancel the predicted sensory pattern. The
the molecular layer, they are excited by parallel fibers that alpeesent model tested two extreme conditions: stellate cells fire
excite the medium ganglion cells. Thus in this model thgerfectly correlated with the EOD or perfectly uncorrelated.
nonlinearity of the shunting is proportional to the linear effecfEhe true timing of stellate cells with respect to the EOD most
of inhibition, and no marked change in system dynamics ligely lies somewhere in between these extreme cases.

observed. The relevance of the spike timing of stellate cells becomes
more apparent when one considers the responsiveness of stel-
Further research late cells to parallel fiber spikes compared with that of MG

cells. Although data are not available for the mormyrid ELL,
The present model represents the activity and adaptationsoime indication appears in the gymnotiform ELL (Berman and
a single MG cell in the ELL. However, the ELL is a corticalMaler 1998) and the mammalian cerebellum (Barbour 1989)
structure with complicated interconnections between the rethat stellate cells in the molecular layer are much more sensi-
dent neurons. Physiological and morphological studies (Graivie to parallel fiber spikes than the principal neurons they
et al. 1998; Han et al. 1999) have suggested a basic modutdribit (pyramidal cells in the gymnotiform ELL and Purkinje
structure with excitatory (E) modules and inhibitory (I) modeells in the cerebellum). The difference in responsiveness
ules. The efferent neurons of the E-modules are excited by ttmuld be a result of stellate cells being more electrotonically
electrosensory stimuli in the center of their receptive fields, aedmpact that the principal cells, a condition that would gener-
the efferent neurons of the I-modules are inhibited by stimuli @lize to the mormyrid ELL. Granule cells that give rise to
the center of their receptive fields. Recent anatomical studigarallel fibers receive input from many sources besides corol-
(Han et al. 1999) suggest that the MG cells of each of thelsey discharge signals, so it is likely parallel fibers are active,
modules are synaptically interconnected, thus inhibiting eaahd therefore so are stellate cells, even when there is no EOD.
other. One inhibition of the present model is that such mutu@he present model restricts the activity of stellate cells to the
inhibition and other circuitry features have not been includefitst 150 ms following the EOD. In the absence of MG cell
One possible explanation of the data on inhibitory plasticityroad spikes, the stellate cell synapses onto MG cells would be
in the ELL that has not been addressed in this model is thagpressed to their lowest possible levels due to these asynchro-
plasticity at the synapse from parallel fibers onto stellate celipus stellate spikes. However, the MG cells that are driven by
could be responsible for the apparent plasticity of IPSPs. Tlampullary electroreceptor afferents would respond with ran-
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domly timed broad spikes. In analogy with the uncorrelatdearning functiond.(x,) andL (x,) are equivalent to the EPSP and

stellate cell spikes (Fig. 5), the learning rule acts to normali@SP wave functions, respectively.

the inhibitory inputs to a constant broad spike output. _ As has been shown previously (Roberts and Bell 2000), the sta-
An extension of the model that was studied for excitatorr%}’gc?rgtg“ﬁt“;?rggﬁxpgrt%”t“?&mt;"'es%thsaltjég‘;tm%%dii';’c')'é%pgolb?ﬁg'ty IS

t)elérinstlcﬂyl l(ROb.erts E}Hd Be||h2(()j00) IS the feffects of glﬁere.expressions for the average change in synaptic weights per &ade (

poral learning rules on the dynamics of sensory adaptatiqi A3), we arrive at the condition

In contrast to the excitatory learning rule, the choice of learn-

ing rule used for the inhibitory synapses was not measured

experimentally, but hypothesized to be the inverse of thg [

temporal learning rule governing excitatory synapses. Similan

results apply here as in a previous modeling study for excita- N N

tory synaptic plasticity alone (Roberts and Bell 2000); only a -3 |:—a‘,+ BE D Lix,— Xn)} (%, — %) =0 (Ad)

near match between the postsynaptic potential and the learning . -

function can lead to a stable negative image. That is, if the

postsynaptic potential is excitatory, then the associative coffince the learning functions and the postsynaptic potential waveforms

ponent of the |earn|ng rule must depress the Synapse and hw@ been normalized to Un|ty, the summations dI’Op out and we ar-

a time course that closely matches the EPSP. This is theé &

theoretical reason for our choice of an associative component

Ay — Bwf E I—w(xp - Xn):| E(Xq — Xm)

p=1

for the learning rule that enhances the inhibitory synapses by = Bult e, =B, 1=0 (A9

an amount that is proportional to the IPSP. which can be solved for the constant broad spike probability
In simulations where other temporal learning rules were

used at either the excitatory or inhibitory synapses, oscillations fowtay (A6)

developed that prevented the cancellation of the predictable Bw + B,

sensory signal. In addition, to generate a negative image, {ifere is no plasticity at inhibitory synapses, = B, = 0, then the
non-associative component must have the same sign as it obtained for excitatory plasticity only is recovere: a, /B,
contribution of the postsynaptic potential: enhancement for this equilibrium broad spike probability is also obtained if the ratio of
excitatory synapses and depression for the inhibitory synaps@s.non-associative learning rate to the associative learning rate is the
Thus the present modeling study suggests not only the exdame for the excitatory as for the inhibitory synapsggp,, = ., /B,
tence of synaptic plasticity at inhibitory synapses from stellatelf these ratios are not equal, then by substitutingto the expres-
cells onto MG cells, but also predicts the temporal form of thglons for the average weight changésj¢. A2 and A3), we find

learning rule that changes the synaptic efficacy depending on

the exact timing between the pre- and postsynaptic spike. (AW(Xy 1)) = (Av(Xy 1)) = % (A7)
APPENDIX This expression implies that the weights change at the same rates

. . . . while the spike frequency remains constant. The rate of this “drift” is
In this appenDIx we derive the analytic results reportedRESULTS  jetermined by the difference between the ratios of the learning rates.

T_he e_qumbrlum spike probablllty can be calculate_d by CO”S'de“r!g theThe rate of adaptation for the system is measured by the time it

situation when the noiseless membrane potential is constanson ;5as to approach an equilibrium broad spike frequency. The time

thatAV(x,, t) = 0. From the definition of the membrane potent®li( onstant, associated to this rate can be calculated using the change
5), the only variable that changes as a functiort afe the synaptic i, the membrane potential per cycle

weights. Thus the membrane potential is stationary when

i (AW(Xm, t))E(Xn _ Xm) _ EN: <AU(Xm, t)>|(Xn _ Xm) -0 (Al) AV(Xnv t) = 2 <AW(va t)>E(Xn - Xm) - E <A7}(va t))'(xn - Xm) (A8)

m=1 m=1
m=1 m=1

change is found by averaging over the probability of the occurrenceRftential €q. 9, using the fact that the change is dependent only on
a broad spikef(x,, 1), at each time following the EOD the t-dependent factors. Substituting the expressions for the average

change in synaptic weights, we arrive at

N
<AW(Xm t)) = Qy T Bw E I—w(xp - Xn)f(xpv t) (AZ) N N
p=1 AV(Xnv t) =ayta,— Bw E 2 f(Xp, t)E(Xp - Xn)E(Xn - Xm)
and similarly for the inhibitory synapses e
N N
N =By 2 % D1 = X (% = Xu)  (A9)
(Av(Xy, ) = —a, + By D L% = X)F(Xp, 1) (A3) m-1p-1

e Note that the nonassociative learning rate for the inhibitory synapses

where the broad spike probabilifyx,, t) is defined inEq. 1L The increases the membrane potential because the rate represents a de-
learning ratesg,,, By, «,, andpB, are nonnegative real numbers, anarease of the inhibitory input per cycle.

the learning functionsl,(x,) and L (x,), represent the amount of The rate of change of the membrane potential can be calculated by
associative change for different delays between the pre- and postsgxpanding the broad spike probability functidifx,, t), about the

aptic spikes (seé&qs. 6and 7). In the analysis of this study, the equilibrium valuef. At the equilibrium value, the noiseless membrane
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potential is defined to be so thaff = {1 + exp[-w(U — 6)]} “*. The parameter for the EPSP waveform, dqd the frequency mode of the
first two terms of the Taylor expansion of the broad spike probabiligecaying disturbance, we find that
function near equilibrium are

Re<1> (1+a) 2B -9 [ E! ] (A17)
A N —|=n
O ) =+ [%] V06 )~ U] + - - " B LB+ kY
moav . I o where Re(1d) is the real part of & Thus the time constant, for
=f+uf -V, ) —UJ+--- (A0 adaptation decreases by a factor of-{1a) * with the addition of

T ) . . lasticity at inhibit: .
Substituting the first two terms intBq. A9 yields plasticity at inhibitory Synapses

NN The author thanks G. McCollum, G. Magnus, V. Han, and C. Bell for
AV(X,, t) = ﬂu(f — fz)[ Bu 2 z V(Xp, DE(Xy = X)) E(Xy — Xo) discussions and helpful suggestions on the manuscript.
m=1 p=1 This research was supported in part by National Science Foundation Grant
IBN 98-08887.
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