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The changes of synaptic strength are analyzed on two time scales: the fast local field dynamics, and the slow
synaptic modification dynamics. The fast dynamics are determined by the synaptic strengths and background
noise in the system. The slow dynamics are determined by the functional fornteaioral learning rule
Temporal learning rules are defined to be functions yielding state dependent changes in synaptic strengths
depending on the timing of pre- and postsynaptic states in the network. The evolution of local field dynamics
that result from various learning rules are analyzed for a stochastic, discrete time neural model with no relative
refractory period that receives a series of delayed adaptive inputs. A fixed point is found in the learning
dynamics, and conditions for two types of instabilities are analyzed. Four universality classes of dynamics are
found that are independent of the details of the temporal learning rules. Examples are given of biological
systems in which these temporal learning rules have been identified, and their functional consequences are
discussed.

PACS numbegs): 87.18.Sn, 87.19.La, 75.10.Nr

I. INTRODUCTION figuration is uniquely determinefl4]. A Hopf bifurcation
destabilizes the network’s approach to this fixed point. The
In this paper we analyze the dynamics of learning in adapinstability is due to the history dependent synapses, and con-
tive neural networks with generalized interactions betweemlitions for stable learning will be derived in the following.
spin stategneurong. The interactiongsynapsesconsidered Furthermore, traveling wave solutions are found for the
here are dependent on the recent history of states, in contrasfjuations describing synaptic modifications, and conditions
to the instantaneous state dependency of Hopfield networker the appearance of these travelling wave solutions are
[1,2]. In addition, the synapses are modifiddarn by a identified. The learning dynamics show a universality that is
function of the time delay between the active states of théndependent of the exact form of the synaptic response func-
pre- and postsynaptic neurons. This generalizes Hopfield'son or temporal learning rule.
implementatiorf 1] of the Hebb ruld 3] where the change of Although temporal learning rules explicitly describe the
synaptic strength is a function of the averaged simultaneoudeterministic effect on the system by each pairing of states,
activity of the pre- and postsynaptic neurons. These genethe average changes in system states over time generate
alizations are shown to lead to static, oscillatory, and traveleharacteristic temporal patterns for each rule. Different tem-
ling wave solutions. Bifurcation parameters are found to beporal learning rules are then associated with identifiable dy-
expressed in terms of the synaptic response functions aneamics. Four classes of dynamics will be treated in the fol-
learning functions. lowing: stable approach to an equilibrium level of activity,
This work is part of an effort to generalize our under- oscillatory instabilities, and two traveling wave solutions.
standing of learning dynamics to conditions that are impor-These dynamics fully describe the possible activity patterns
tant in biological neural networkg—7]. The analysis and that are generated by the connectivity explored in this study,
simulations presented here allow us to classify the types ofind may be generalized to more complex systems.
dynamics that may arise when the interactions are not syn- The classes of dynamics follow from the formalization of
chronous, but depend on recent states of the system. Th@henomena found in biological neural tissue. However, the
stored memories of the system may be stabilized by includresults uncover some interesting dynamics that are inherent
ing a temporal component to the learning rule that controlsn the fatigue of materials far from equilibrium whenever
the changes of synapses. These types of learning rules argeractions change in a state-dependent manner. The adap-
calledtemporal learning rulesand have recently been char- tive dynamics are analyzed by using the simplest possible
acterized in biological systen8—10]. model that possesses the interesting dynamics; a set of tem-
The dynamics of adaptive neural networks can be sepgorally correlated states that interact with a stochastic “neu-
rated into two time scalegl1-13: the fast activity of the ron” that is simultaneously being influenced by a time-
neural stategresponse time and the slow change in the dependent perturbation. As the perturbation is repeated, the
strength of synapses between neur@earning time. In the  strengths of the synapses change by rules that depend on the
study of disordered systems, this separation of time scales &ate of the whole system.
called partial annealin§12]. Here we follow the approach In the next section we present the network model and
developed in6] and apply separation of time scales to theintroduce our analytic approach. General temporal learning
analysis of learning in spiking neural networks. rules are formalized and the average changes of the synapses
The evolution of synaptic strength determines the dy-under temporal learning rule are established. The following
namical classes. Under certain conditions a fixed point in theection explores the state dynamics of the model neuron
spike output probability function exists and the synaptic congiven a(nonbiologica) rectangular response function. The
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i where thex-coordinate parametrizes fast neurotsdin dy-

T : namics, and thé-coordinate parametrizes slow learnifig-

‘\ ] teraction dynamics. We emphasize thatis not a spatial
! | component, but the notation is used to suggest techniques

R from field theory.

* ] We will compute the ensemble average change in synap-
‘\ 1 tic strength following the pairing of inputs to the neuron. In
. each interval x; ,x; + 1], there is a finite probability of apike
* (s=1) that is functionally related to the average local field,

\“\-,_ F(xi ). Let n(x;) be the number of spikes betwegnand

e Eqtxp 50 Ect x(msec) Xi+1. If B parametrizes the noise in the model neuron, the
partition function given by

%ﬁmax 0

,
i~

FIG. 1. Response function$he functional form of the response
functions are shown here. The square response fun¢siaid) is I
used in the analysis of Sec. lIEs parametrizes the widthX de- Z(0)= H 2 exp[—[g’n(xi)(ﬁ(xi H—01], 2.2
notes the beginning of the nonzero segment, and the normalization =1\ n(xj)

constrains the height toB/. The alpha-function response function o )
(broken tracgis studied in Sec. IV, and has a maximum value atwhere 6 is introduced as a spike threshold to regulate the

E,+ Xs. The percentage of the maximum average local field valueaverage number of spike@\(t)), during each cycle.

%hax. is the value used in the simulations wiltx=1 ms and the If we choose the time steps of thecomponent to be as

weights range from O to 1. small as the absolute refractory period of the neunon,
=Ax, then only one spike can occupy each time-step,

third section investigates the dynamics that arise from a mor&(x;) =0,1. Thus

complicated, biologically realistic synaptic response func- |

tion, and the theoretical significance of these results are pre- _ P B

sented in the final section. Z(G)—iﬂl [1+exd —A(h(x, 1)~ )11 22

Il. THEORETICAL FRAMEWORK Using this pa(tition function, we may compute the average
number of spikes during each time stégee, for example,

To analyze the dynamics of temporal learning rules, wg17)):
consider a two-state, stochastic neuron wgpin) statess
=0, 1. A series of input sites are chronologically activated (0.0 19 nZ(0) 1
from 0— 1 for one time step and returned to the resting state. \"(Xi,1))= =5~ - Yy —
This architecture is equivalent to that found in Fig. 1 of B oh 1rexd = Bh(x, 0= 0)]
Kempteret al. [6]. However, in the present case each input (2.3
s_ite is .ac.tivated at a d_ifferent delgy folloyving a reference, here we have used the notatidm],zﬁ(xi 1).
time, similar to the auditory scenario consideredSh The From the expression for the spike probability function, we
reference time represents the repeated presentation of a teQk, that given the noise paramei@r,and the spike thresh-
poral pattern. Lek=0 be the reference time, and all positive old, 6, one may calculate the spike probability from the av-
values ofx;=iAx, i=1,2,...] represent the beginning of N . .
each response to the activation of the input series represent8 ge local fieldh(x;,t). Each input of .the delayed series
by the spike response functiarfx) (see Fig. 1 The spike contnbute; through the response fu_nctle(xi), that repre-
response function is defined such that there is an increasésmS the time course ofthe mtergctlon. In the following, the
probability of a postsynaptic spike following each input. This résponse f.un.ctlon g b? normalized to unity, E(?(i)zl'
architecture is chosen because it is the simplest scenario th\g{hen ml_JIt|pI|ed by a We'ghW(Xi. t) the product yields the
exhibits the dynamics characteristic of temporal learnin ontr|but|o_n Of a synapse that_ Initiates its INpubat The
rules. The model shows the dynamics for any learning Sys_otaI contribution from the series of adaptive inputs is the
tem where adaptable inputs are repeatedly correlated with }m

nonadaptive temporal pattern. In addition, this architecture is N
relevant to certain b_|olog|cal neural systefbsl5,14, \_Nhere _ he(x; ,t):E w(x; ,t)e(x,=X;). (2.4
the response function represents the postsynaptic potential i=1
due to synaptic input. . o _
This quantity is added to the nonadaptive temporal pattern,

A. Fast neural dynamics &(x;), to yield the total average local field,
To investigate how the synaptic strengths of the input F(Xi D) =h(x;,t)+&x). (2.5

series change due to specific temporal learning rules, we
wish to correlate the delayed series with a nonadaptive temFhe weights are indexed by the arrive time of the presynaptic

poral pattern&(x). Each repetition of the paired input will spike. Thus,w(x;,t) represents the weight that received a
be parametrized with the variabtehat represents the evo- presynaptic spike at time during cyclet, and the effect of
lution of the system under the influence of the learning rulesthat spike on the postsynaptic spike probability is repre-
Thus, the neuron will be dependent on the coordinatey,(  sented by response functiog(x;).
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B. Slow synaptic dynamics We shall first explore a simple example of the dynamics

We will now formalize the temporal learning rule in terms @Ssociated ‘fY'th EQ(Z'ES)- Let L(x;—x)=j; , the limiting
of changes in the synaptic strengtfisynaptic weights  C2S€ of a “temporal Iearnlng rulg _where the synaptic
w(x;,t), over timet. Let s; be the state of the input site that CNange responds to postsynaptic activity at only one point in
begins at timex;. Let L(x;—x;) be proportional to the time. This equivalent to the learning rule used in Hopfield
change of the synaptic strength with input stafg;)=1 a networks,_ except tr‘m‘at _hfare”the synapses are hlStOI")‘/ deBen—
postsynaptic spike a; . We restrict the domain of the asso- dent making this a splk.mg model as opposed to a “rate
ciative rule to thex-component of our modgkhe fast time model. The average weight change is then
scalg. Whenever possible, we will normalize the learning
function such tha®;L(x;)=1, and scale with a learning rate

constant\. ey, ' . . , .
Suppose that as progresses the model neuron’s spike Let h®qx;) be the local field associated with the fixed point

output converges to a fixed point of the spike probability®f the spike probability function, such thaf(x))
function denoted byf(x). The average change in the =f(h®(x))). Expand(n®(x;,t)) about the deviation of the
weights during each cycle will be dependent on the deviatioriocal field from the fixed point fieldh(x; ,t) =h®{x;), in the
of the spike probability function fromi(x;). This ensemble €xpression for the average synaptic change, (Ed). The
average change of the weights is then formalized by averadoWest order term of the expansion yields

ing the deviation from the final state over the learning rule: (AW(X ) = =\ Y(x) (A0 ) —FEHx )+ - -

(2.10

where Y(x;) = 8 (x;)(1—f(x;)). Defining a set of weights,
{w(x;)}, such that the fixed point local field,

(Aw(x; 1)) =N (%) = (n°U(x; ,)). (2.9

(Aw(x; .t>>:x; L(x;— %) (F(x) = (n°¥i(x; ,0))),
(2.6

where the sum is over the nonvanishing extent ©f;), and
Aw(x;,t)=w(x;,t) —w(x;,t—1). The right hand side of
this equation contains the information about the correlation
between the pre- and postsynaptic spikes. However, this is
implicit because our labeling of the weights. The input spikewe have the expression for the average change in synaptic
train at the synapsev(x;,t) is nj"(x;,t)=45; so that the strengths,

input spike always occurs at the same time during the pre-

N
Fe%xi>=j§1w(x;)e(xi—xwg(xi), (2.11)

N
sentation of the nonadaptive temporal pattern. _ _ . . iy .
Since the first term of Eq2.6) is independent of the state (Awlxi,0) )\Y(Xl)jgl (WX 1) = W(x;))exi = ;).
of the (postsynaptit model neuron, it represents a nonasso- (2.12
ciative term. An important case is when the fixed point of the
spike probability function is constarft(x;) =f. Then the av- C. Stability analysis

erage change in weights becomes The change of an individual weight in E@®.12 depends

on the strength of synapse that are in turn determined by
(Aw(X; ,t)):)\f—)\z L(xj—xi)<n°‘“(xj Y. (2.7 other weights in the series of adaptive inputs. Thus, the non-
] locality of the response function in thecomponent leads to

. . _..instabilities that will drive the system away from the fixed
This learning rule causes the system to approach an equm%—

) : S oint of the spike probability function. To investigate the
rium of synaptic strengths that generates a negative image @b qitions under which the instabilities arise, we substitute

the nonadaptive patterng(x;). The negative image is iy Eq.(2.12) an oscillatory solution for the weight configu-
sculpted from the series of delayed inputg(x;), if certain 5o in thex component. Theé component is given an ex-

constraints are imposed on the functional formL¢k;). We  yonential decay parametrized by the constar@tability will
will investigate these constraints in the next two sections et if the decay constant is positive. The solution to be
Equation(2.7) is a special case of the learning rule studied iNtested is

[6]. In the following we analyze the dynamics when the input

spikes through the adaptive input are repeatedly correlated in (W(X; 1)) =W(x;) +e*¥ie !, (2.13

time with a nonadaptive input.

Another important class of temporal learning rules is thewherek is the wave number of instabilities that deviate from

case where associative enhancement and depression compgee fixed point of the weight configuration.

nents cancel such thayL(x;)=0. In this case, the average = The computation is simplified if we approximate the sums

synaptic change simply becomes with integrals, take the limitAx—0, and Aw— (d/dt)w.

The problem now becomes a one-dimensional field theory in
B out x that is evolving in timef. Substituting Eq(2.13 into this
(Aw(x; 1)) = _)‘; LOG=x)(n*"(x;.1)). (2.8 approximation of Eq(2.12 yields
This learning rule cannot drive the system to a fixed point E_ f _ v\ aik(y—x
probability function that is constant ix . T =MY(x) | ely—x)e ™y, (2.14
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We will represent the response function by the so-calledvhereY is defined following Eq(2.10. After substituting in
a-function with a variable decay constaatx)=E%e"®*for  the solution given in Eq(2.13, and using the continuum
x=0, otherwisee(x)=0 (shown in Fig. 1. The normaliza- approximation, we change variables to arrive at

tion is chosen so thafe(x)=1. Using this functional form

for the synaptic response function, Eg.14 becomes Ez)‘Yf f L(y—2)e(y)e *dydz (3.3
T
1 E2—k?)+i2kE
—=)\Y(x)E2% (2.195 As before, the integrals are over the nonvanishing segments
T (E“+K%) of L(y—2z) ande(y). Carrying out the integration yields
The system will spontaneously oscillate with a frequency of
. ) . . . 1 4  [(kE\ . [kL\ . .. B
1/ if the real part of 1+ is negative. Sinc&(x) is always ~=\Y o sin| —|sin| o elk(Xe= X +LI2=E/2)
greater than zero, t/is negative for values ok that are T k
greater thark. Thus, the evolution of the weight configura- 3.4

tion is unstable except in the limit dE—o, i.e., e(x) Th ; S " :
; y " e real part of this expression is positive for klbnly if
=§(x), the Dirac delta function. In addition, the complex £ _, andF;(E=X,_ P P y

term in Eq.(2.14 implies the existence of traveling wave
solutions in the weight configuration so that the system neveg

set_}_lﬁ's toa co?st.an't c;)nﬂ?urapont. First it tion and the response function. Under these conditions, the
IS €xample 1S INSTrUCHIVE TORINQRQSONS. FIrst, | Cap'synaptic strengths relax until their inputs exactly cancel the

tuTes. all (if kt)f:e dynam|chs tth?rt] a?pegr W'_trl{ tefn:r?oral_Leamm&onadaptive temporal pattern. When the learning parameters
rules: a stable approach 1o the fixed point of the Spike prob o changed, a Hopf bifurcation is crossed and oscillations
ability function in the limit,E—oc, and instabilities for all appear

finite values ofE. Second, it shows that instabilities develop
if the temporal learning rule is not extended in time. The
learning rules of the next two sections will generalize this
case to study the dynamics when the rate of synaptic change We may generalize our representation of the associative

Thus, stability of the temporal learning rule is assured
ly when there is an exact match between the learning func-

B. Instabilities: Oscillations and traveling waves

is dependent on the activity at different times. component of the learning rule by separating the learning
function into a segment that reduces the weights(x)=0
IIl. SQUARE RESPONSE FUNCTION for all x, and a segment that increases the weightg(x)

. _ . _ ~ =0 for all x. The average change in weights now becomes
We now investigate the case in which both the learning

rule and response functions are square waves. This case will
show the effect of the learning rule’s temporal dependence.
This form of learning rule exhibits the universality classes
containing the dynamics generated by the all temporal learn- _ _ out
ing rules such as the biologically realistic-function that —A 2,: L™ (x=x)(n°"(x;,1)), (3.9
will be treated in the next section. Let

(AW(X; ,t))z)\f—)ﬁz L (x=x){(n°"(x; ,t))
i

whereL*(x)=F1/L* for X.<x=<X.+L*. Without loss
_JVE if Xes<x=Xg+E, of generality, we may scale thecomponent such thaE
~ |0 otherwise, (3. =1, and set the beginning of each synaptic response so that
Xg=0. When we carry out the same calculation as above,
wherexg is a real number that denotes the onset of the inwe find that the real part of the decay constant is
teraction(spike arrival, and E denotes the extent of the in-
teraction (postsynaptic response to the spike time (see 4 | N7 k _ [k
Fig. 1. This definition is constructed so that the area under R&7) = WL_—COS(E(ZXJ“L —1)>sm<§L )
e(x) is unity. The learning functionl.(x), is defined simi-

€(x)

larly with E replaced byL. To simplify the calculation, we AT Kk Kk Kk
will choose the fixed point of the spike probability function - L—+COS<§(2X++ L — 1))sin(§L*> sin(z).
to be a constanf,(x) =f. This choice of the fixed point does

not detract from the generality of the results because we are (3.6

primarily interested in instabilities of the equation of synap- o )
tic change that are dependent on the associative term. The stable approach to equilibrium of the synaptic strengths
under the influence of the learning rule requires that this

expression is positive for ak.
Two important categories of learning rules depend on the
Proceeding as in the previous section, we now write Eqregion of the learning rule that is coincident with the inter-

A. Stability: Temporal pattern inverse

(2.10 as action. Hebbian learning is defined as a positive synaptic
change during the interaction, and anti-Hebbian learning is
(AW(x; b)) = —)\Y; L(xj—xi)(ﬁ(xj ,t)_ﬁea(xj))’ defined as a negative synaptic change. In the first case, the

associative increase of the synaptic strength is coincident
(3.2 with the response function so that =1 andX,=0. Sub-
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Bhin0n when the learning rule is symmetric about the origin, then
the oscillations shown by tracd@) develop. The left- and

88 © ; C N

SN i right-moving traveling wavesC and D are generated by
learning rules whera ~=X\" and\f>0. Since these are the
only instabilities that arise in one-dimensional systems, we
have a full classification of the dynamics generated by tem-
poral learning rules.

66

IV. BIOLOGICAL RESPONSE FUNCTION

In this section we will investigate the dynamics that result
when the learning rule is represented #yfunctions. This
functional dependence of the learning rule is consistent with
the known biological mechanisms thought to be responsible
for long term changes in synaptic strenii8]. Let e(x) be
defined as in Sec. I, and defihgx) also as anx functions
with the parameteL replacingE. Using these functions in
30 60 9% 120 x Gms) the dynamical equation of synaptic change, E83) be-

- ) comes
FIG. 2. Instabilities.The average local field as generated by four

different temporal learning rules in a simulation. In all cades, 1 y % .
=L*=E,, and the nonadaptive inp(golid line) was introduced at —=\Y EZLZJ dZJ dyy(y—z)e -/ 2e Evelkz,
t=0. (A) Only associative enhancement(=0), Af>0, x_=o0, T 0 0

andt=200. (B) Same agA) with X, =—EJ/2, andt=1000. (C)

Af=0,\"=\">0,X,=0, X_=E,, andt=20.(D) Same asC)  The integrals can be evaluated to yield
with X_=—Eg andt=20.

4.9

1 E2L? 2(ik+L) 1 1
stituting these values into E¢3.6) we finc_j that Ref)<0 fc_>r_ ;_)\Y(ik+L)2 - (L+E)? + (ik—E)2 - (L+E)?|
some value ok regardless of our choice of the remaining
parameters. Thus, Hebbian learning causes perturbations (4.2)

from the fixed point to grow with time so that nonadaptive The conditions for stable solutions can be made more appar-
temporal patterns are magnified by the adaptive inputs.  ent by rescaling thex component in units oE=1. After

The case of anti-Hebbian learning is more stable, as cagome algebra, one finds that the real part afi¢ hegative if,
be seen when we s&t™=1 andX_=0. It is possible for for some choice ok,

Re(r)=0 for all k if A\™>\" for a wide range of values of
L* andX, . In fact, if L¥=1, then 0>(1—-L)k®+(3—L+2L2—2L3k*—(2—3L+3L%+L®
A . +LA— LK%+ (L+L2+L%. 4.3
- —_\t H _
Re(7) = Ykz[)\ )‘ cos(kx+)]sm2(2). (3.7 This condition is satisfied, and thus the rule is unstable,
for all L>E. If L<E, a narrow band of values exist where
here are no solutions for the wave number such that Eqg.

S . . t
This implies stability regardless of the time delay between 4.3 is negative(shown in Fig. 3. Thus, thea-function is

the beginning of the synaptic response and the onset of the. hil foraiving than th functi
weight increase in the learning function. Due to the stron Ightly more forgiving than the square response function.

stability that results from anti-Hebbian learning, when at- he pther _results from th_e gpalysis for the square response
tempting to store a target temporal pattern it is perhaps bett nction still hold, but wity _th(_e caveat that there is more
to base learning algorithm on anti-Hebbian learning rathe Olerance for parameter Qewatlons from an e'xact mat.ch be-
than the traditional implementations of the Hebbian @l ween th_e response_f_unctlodx), and.the learning function,
However, the anti-Hebbian system will not “complete” an L(x), to insure stability.

input pattern, but the stored pattern is recovered through a

reversal of the output when there is no input pattern. V. DISCUSSION

Thgtypes of the instabilities reflected by the average local The primary goal of this project is to understand how the

field, h(x,t), are shown in Fig. 2. This figure was generatedgynamics of biological neural networks complicate known
by a computer simulation of the model's dynamics. At thedynamics of adaptive neural networks. We have shown that
beginning of the simulation, a nonadaptive inp&¢x), is  given a series of delayed inputs, temporal learning rules lead
delivered for the time steps, 45,<105, shown by the to one of four dynamical typeg1) stable approach to an
solid line. When there is an exact match between the reequilibrium activity pattern(2) oscillatory instabilities with
sponse function and learning functige(x)=L(x) for all 3 frequency determined by learning rule paramet@syav-

x], and the nonassociative learning ratf>0, then the eling waves propagating in the x direction; (4) traveling
adaptive input weights adjust to cancel the nonadaptive inpuivaves propagating in the x direction. As long as the time
pattern,&(x). The result is tracé€A) in the figure. However, scale is such that the duration of the synaptic response is not
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E son to believe that the same principle underlies sensory pro-
L cessing in several other systefi9], such as the mammalian
16 auditory system and the cerebelly@0]. Instabilities would

disrupt the sensory images in these syst¢idd. Thus, the

fact that there is a region of stability in Fig. 3 is advanta-
geous for these systems because a precise match between the
associative depression of the learning rule and the response
L function is not required for a stable final image.

However, instabilities can have an important function in
some biological systems. Learning rules leading to the trav-
eling wave solution in the-x direction have also been ob-
0A4fpr=-rm--rmmmmmmmmmmmmmmmmmmmmemm served, and may serve an important function because this

arrangement would help the brain to associate events that are
separate in time. If a sensory input to a neuron is distributed
30.0 60.0 90.0 & (ms1) in time through a series on adaptable synapses, and a later
input is paired with the initial stimulus, then the activity

FIG. 3. Range of stability for learning rules based on the initiated by the later input will propagate to the beginning of
function.The shaded regions are solutions kovhere 1/<0. Sta-  the distributed input. Thus the traveling wave solution acts to
bility occurs only for values of where the ratic/L is between 0.4 |ink the two events in tim§7]. That this type of learning rule
and 1. is found in cortical brain structures that are important in the
association of different events is suggestive. One can expect

negligible, instabilities arise if enhancement of the synapse@idt Fhedform (_)f_the Lemfporal_ Iear?lng rrlljlzpllay_s é} cr|t|call
is associated with the postsynaptic response. Thus, there i@€ In determining the function of each biological neura
no Hebbian learning in the traditional sense, only anti-

network.
Hebbian (activity pattern 1 and differential Hebbian learn- Generalizations of the methods presented here will be of
ing (activity patterns 2 and)3

interest to other fields besides neuroscience. The recent in-
The neural architecture investigated here is far simple

ferest in disordered systems out of equilibrium provides a
than that found in most neural networksiological and ar- rich background for the separation of the time scales into
tificial). Two important elements that are certain to have a

ndiﬁ‘erent variables. It would be interesting to compute vari-
important influence on the dynamics resulting from particu-""l?Ies such as energy and staFe corre]atlons n ]arger networks
with the learning rules and interactions studied here. The

lar learning rules are recurrent connections and inhibition. . e .
This study must therefore be considered as a first-ordeieSults Of such a computation may provide insight into the

analysis of the dynamics of temporal learning rules in bio_aging of quenched materials under externally applied stress.
logical systems. However, the simplification presented here
preserves what are expected to be the major components of
the dynamics, even if modified by recurrent connections and The author would like to thank Gin McCollum, and Curt
inhibition. Bell for discussions and helpful suggestions on the manu-

The first of these solutions has been observed in the elegcript. This research was supported in part by National Sci-
trosensory system of mormyrid electric fish, and there is reaence Foundation Grant No. IBN-9808887.
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