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Dynamics of temporal learning rules
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The changes of synaptic strength are analyzed on two time scales: the fast local field dynamics, and the slow
synaptic modification dynamics. The fast dynamics are determined by the synaptic strengths and background
noise in the system. The slow dynamics are determined by the functional form of atemporal learning rule.
Temporal learning rules are defined to be functions yielding state dependent changes in synaptic strengths
depending on the timing of pre- and postsynaptic states in the network. The evolution of local field dynamics
that result from various learning rules are analyzed for a stochastic, discrete time neural model with no relative
refractory period that receives a series of delayed adaptive inputs. A fixed point is found in the learning
dynamics, and conditions for two types of instabilities are analyzed. Four universality classes of dynamics are
found that are independent of the details of the temporal learning rules. Examples are given of biological
systems in which these temporal learning rules have been identified, and their functional consequences are
discussed.

PACS number~s!: 87.18.Sn, 87.19.La, 75.10.Nr

I. INTRODUCTION

In this paper we analyze the dynamics of learning in adap-
tive neural networks with generalized interactions between
spin states~neurons!. The interactions~synapses! considered
here are dependent on the recent history of states, in contrast
to the instantaneous state dependency of Hopfield networks
@1,2#. In addition, the synapses are modified~learn! by a
function of the time delay between the active states of the
pre- and postsynaptic neurons. This generalizes Hopfield’s
implementation@1# of the Hebb rule@3# where the change of
synaptic strength is a function of the averaged simultaneous
activity of the pre- and postsynaptic neurons. These gener-
alizations are shown to lead to static, oscillatory, and travel-
ling wave solutions. Bifurcation parameters are found to be
expressed in terms of the synaptic response functions and
learning functions.

This work is part of an effort to generalize our under-
standing of learning dynamics to conditions that are impor-
tant in biological neural networks@4–7#. The analysis and
simulations presented here allow us to classify the types of
dynamics that may arise when the interactions are not syn-
chronous, but depend on recent states of the system. The
stored memories of the system may be stabilized by includ-
ing a temporal component to the learning rule that controls
the changes of synapses. These types of learning rules are
called temporal learning rulesand have recently been char-
acterized in biological systems@8–10#.

The dynamics of adaptive neural networks can be sepa-
rated into two time scales@11–13#: the fast activity of the
neural states~response time!, and the slow change in the
strength of synapses between neurons~learning time!. In the
study of disordered systems, this separation of time scales is
called partial annealing@12#. Here we follow the approach
developed in@6# and apply separation of time scales to the
analysis of learning in spiking neural networks.

The evolution of synaptic strength determines the dy-
namical classes. Under certain conditions a fixed point in the
spike output probability function exists and the synaptic con-

figuration is uniquely determined@14#. A Hopf bifurcation
destabilizes the network’s approach to this fixed point. The
instability is due to the history dependent synapses, and con-
ditions for stable learning will be derived in the following.
Furthermore, traveling wave solutions are found for the
equations describing synaptic modifications, and conditions
for the appearance of these travelling wave solutions are
identified. The learning dynamics show a universality that is
independent of the exact form of the synaptic response func-
tion or temporal learning rule.

Although temporal learning rules explicitly describe the
deterministic effect on the system by each pairing of states,
the averagechanges in system states over time generate
characteristic temporal patterns for each rule. Different tem-
poral learning rules are then associated with identifiable dy-
namics. Four classes of dynamics will be treated in the fol-
lowing: stable approach to an equilibrium level of activity,
oscillatory instabilities, and two traveling wave solutions.
These dynamics fully describe the possible activity patterns
that are generated by the connectivity explored in this study,
and may be generalized to more complex systems.

The classes of dynamics follow from the formalization of
phenomena found in biological neural tissue. However, the
results uncover some interesting dynamics that are inherent
in the fatigue of materials far from equilibrium whenever
interactions change in a state-dependent manner. The adap-
tive dynamics are analyzed by using the simplest possible
model that possesses the interesting dynamics; a set of tem-
porally correlated states that interact with a stochastic ‘‘neu-
ron’’ that is simultaneously being influenced by a time-
dependent perturbation. As the perturbation is repeated, the
strengths of the synapses change by rules that depend on the
state of the whole system.

In the next section we present the network model and
introduce our analytic approach. General temporal learning
rules are formalized and the average changes of the synapses
under temporal learning rule are established. The following
section explores the state dynamics of the model neuron
given a ~nonbiological! rectangular response function. The
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third section investigates the dynamics that arise from a more
complicated, biologically realistic synaptic response func-
tion, and the theoretical significance of these results are pre-
sented in the final section.

II. THEORETICAL FRAMEWORK

To analyze the dynamics of temporal learning rules, we
consider a two-state, stochastic neuron with~spin! statess
50, 1. A series ofI input sites are chronologically activated
from 0→1 for one time step and returned to the resting state.
This architecture is equivalent to that found in Fig. 1 of
Kempteret al. @6#. However, in the present case each input
site is activated at a different delay following a reference
time, similar to the auditory scenario considered in@5#. The
reference time represents the repeated presentation of a tem-
poral pattern. Letx50 be the reference time, and all positive
values ofxi5 iDx, i 51,2, . . . ,I represent the beginning of
each response to the activation of the input series represented
by the spike response functione(x) ~see Fig. 1!. The spike
response function is defined such that there is an increases
probability of a postsynaptic spike following each input. This
architecture is chosen because it is the simplest scenario that
exhibits the dynamics characteristic of temporal learning
rules. The model shows the dynamics for any learning sys-
tem where adaptable inputs are repeatedly correlated with a
nonadaptive temporal pattern. In addition, this architecture is
relevant to certain biological neural systems@5,15,16#, where
the response function represents the postsynaptic potential
due to synaptic input.

A. Fast neural dynamics

To investigate how the synaptic strengths of the input
series change due to specific temporal learning rules, we
wish to correlate the delayed series with a nonadaptive tem-
poral pattern,j(x). Each repetition of the paired input will
be parametrized with the variablet that represents the evo-
lution of the system under the influence of the learning rules.
Thus, the neuron will be dependent on the coordinates (x,t),

where thex-coordinate parametrizes fast neuronal~spin! dy-
namics, and thet-coordinate parametrizes slow learning~in-
teraction! dynamics. We emphasize thatx is not a spatial
component, but the notation is used to suggest techniques
from field theory.

We will compute the ensemble average change in synap-
tic strength following the pairing of inputs to the neuron. In
each interval@xi ,xi 11#, there is a finite probability of aspike
(s51) that is functionally related to the average local field,
h̄(xi ,t). Let n(xi) be the number of spikes betweenxi and
xi 11. If b parametrizes the noise in the model neuron, the
partition function given by

Z~u!5)
i 51

I S (
n(xi )

exp@2bn~xi !~ h̄~xi ,t !2u!# D , ~2.1!

where u is introduced as a spike threshold to regulate the
average number of spikes,^N(t)&, during each cycle.

If we choose the time steps of thex component to be as
small as the absolute refractory period of the neuron,r
5Dx, then only one spike can occupy each time-step,
n(xi)50,1. Thus

Z~u!5)
i 51

I

†11exp@2b„h̄~xi ,t !2u…#‡. ~2.2!

Using this partition function, we may compute the average
number of spikes during each time step~see, for example,
@17#!:

^n~xi ,t !&52
1

b

]

]hi
ln Z~u!5

1

11exp@2b„h̄~xi ,t !2u…#
,

~2.3!

where we have used the notation,hi5h̄(xi ,t).
From the expression for the spike probability function, we

see that given the noise parameter,b, and the spike thresh-
old, u, one may calculate the spike probability from the av-
erage local field,h̄(xi ,t). Each input of the delayed series
contributes through the response function,e(xi), that repre-
sents the time course of the interaction. In the following, the
response function will be normalized to unity,( ie(xi)51.
When multiplied by a weight,w(xi ,t), the product yields the
contribution of a synapse that initiates its input atxi . The
total contribution from the series of adaptive inputs is the
sum

he~xj ,t !5(
i 51

N

w~xi ,t !e~xj2xi !. ~2.4!

This quantity is added to the nonadaptive temporal pattern,
j(xi), to yield the total average local field,

h̄~xi ,t !5he~xi ,t !1j~xi !. ~2.5!

The weights are indexed by the arrive time of the presynaptic
spike. Thus,w(xi ,t) represents the weight that received a
presynaptic spike at timexi during cyclet, and the effect of
that spike on the postsynaptic spike probability is repre-
sented by response function,e(xi).

FIG. 1. Response functions.The functional form of the response
functions are shown here. The square response function~solid! is
used in the analysis of Sec. III,Es parametrizes the width,Xs de-
notes the beginning of the nonzero segment, and the normalization
constrains the height to 1/Es . The alpha-function response function
~broken trace! is studied in Sec. IV, and has a maximum value at
Ea1Xs . The percentage of the maximum average local field value,

%h̄max, is the value used in the simulations withDx51 ms and the
weights range from 0 to 1.
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B. Slow synaptic dynamics

We will now formalize the temporal learning rule in terms
of changes in the synaptic strengths~synaptic weights!,
w(xi ,t), over timet. Let si be the state of the input site that
begins at timexi . Let L(xj2xi) be proportional to the
change of the synaptic strength with input states(xi)51 a
postsynaptic spike atxj . We restrict the domain of the asso-
ciative rule to thex-component of our model~the fast time
scale!. Whenever possible, we will normalize the learning
function such that( iL(xi)51, and scale with a learning rate
constant,l.

Suppose that ast progresses the model neuron’s spike
output converges to a fixed point of the spike probability
function denoted by f̂ (xi). The average change in the
weights during each cycle will be dependent on the deviation
of the spike probability function fromf̂ (xi). This ensemble
average change of the weights is then formalized by averag-
ing the deviation from the final state over the learning rule:

^Dw~xi ,t !&5l(
j

L~xj2xi !„ f̂ ~xj !2^nout~xj ,t !&…,

~2.6!

where the sum is over the nonvanishing extent ofL(xi), and
Dw(xi ,t)5w(xi ,t)2w(xi ,t21). The right hand side of
this equation contains the information about the correlation
between the pre- and postsynaptic spikes. However, this is
implicit because our labeling of the weights. The input spike
train at the synapsew(xi ,t) is ni

in(xj ,t)5d i j so that the
input spike always occurs at the same time during the pre-
sentation of the nonadaptive temporal pattern.

Since the first term of Eq.~2.6! is independent of the state
of the ~postsynaptic! model neuron, it represents a nonasso-
ciative term. An important case is when the fixed point of the
spike probability function is constant,f̂ (xi)5 f̂ . Then the av-
erage change in weights becomes

^Dw~xi ,t !&5l f̂ 2l(
j

L~xj2xi !^n
out~xj ,t !&. ~2.7!

This learning rule causes the system to approach an equilib-
rium of synaptic strengths that generates a negative image of
the nonadaptive pattern,j(xi). The negative image is
sculpted from the series of delayed inputs,he(xi), if certain
constraints are imposed on the functional form ofL(xi). We
will investigate these constraints in the next two sections.
Equation~2.7! is a special case of the learning rule studied in
@6#. In the following we analyze the dynamics when the input
spikes through the adaptive input are repeatedly correlated in
time with a nonadaptive input.

Another important class of temporal learning rules is the
case where associative enhancement and depression compo-
nents cancel such that( iL(xi)50. In this case, the average
synaptic change simply becomes

^Dw~xi ,t !&52l(
j

L~xj2xi !^n
out~xj ,t !&. ~2.8!

This learning rule cannot drive the system to a fixed point
probability function that is constant inxi .

We shall first explore a simple example of the dynamics
associated with Eq.~2.6!. Let L(xj2xi)5d j i , the limiting
case of a ‘‘temporal’’ learning rule where the synaptic
change responds to postsynaptic activity at only one point in
time. This equivalent to the learning rule used in Hopfield
networks, except that here the synapses are history depen-
dent making this a ‘‘spiking’’ model as opposed to a ‘‘rate’’
model. The average weight change is then

^Dw~xi ,t !&5l„ f̂ ~xi !2^nout~xj ,t !&…. ~2.9!

Let h̄eq(xi) be the local field associated with the fixed point
of the spike probability function, such thatf̂ (xi)
5 f „h̄eq(xi)…. Expand^nout(xj ,t)& about the deviation of the
local field from the fixed point field,h̄(xi ,t)5h̄eq(xi), in the
expression for the average synaptic change, Eq.~2.6!. The
lowest order term of the expansion yields

^Dw~xi ,t !&52lY~xi !„h̄~xi ,t !2h̄eq~xi !…1•••,
~2.10!

whereY(xi)5b f̂ (xi)„12 f̂ (xi)…. Defining a set of weights,

$ŵ(xi)%, such that the fixed point local field,

h̄eq~xi !5(
j 51

N

ŵ~xj !e~xi2xj !1j~xi !, ~2.11!

we have the expression for the average change in synaptic
strengths,

^Dw~xi ,t !&52lY~xi !(
j 51

N

„^w~xj ,t !&2ŵ~xj !…e~xi2xj !.

~2.12!

C. Stability analysis

The change of an individual weight in Eq.~2.12! depends
on the strength of synapse that are in turn determined by
other weights in the series of adaptive inputs. Thus, the non-
locality of the response function in thex component leads to
instabilities that will drive the system away from the fixed
point of the spike probability function. To investigate the
conditions under which the instabilities arise, we substitute
into Eq.~2.12! an oscillatory solution for the weight configu-
ration in thex component. Thet component is given an ex-
ponential decay parametrized by the constantt. Stability will
result if the decay constant is positive. The solution to be
tested is

^w~xi ,t !&5ŵ~xi !1eikxie2t/t, ~2.13!

wherek is the wave number of instabilities that deviate from
the fixed point of the weight configuration.

The computation is simplified if we approximate the sums
with integrals, take the limitDx→0, and Dw→(d/dt)w.
The problem now becomes a one-dimensional field theory in
x that is evolving in time,t. Substituting Eq.~2.13! into this
approximation of Eq.~2.12! yields

1

t
5lY~x!E e~y2x!eik(y2x)dy. ~2.14!
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We will represent the response function by the so-called
a-function with a variable decay constant:e(x)5E2e2Ex for
x>0, otherwisee(x)50 ~shown in Fig. 1!. The normaliza-
tion is chosen so that*e(x)51. Using this functional form
for the synaptic response function, Eq.~2.14! becomes

1

t
5lY~x!E2

~E22k2!1 i2kE

~E21k2!2
. ~2.15!

The system will spontaneously oscillate with a frequency of
1/k if the real part of 1/t is negative. SinceY(x) is always
greater than zero, 1/t is negative for values ofk that are
greater thanE. Thus, the evolution of the weight configura-
tion is unstable except in the limit ofE→`, i.e., e(x)
5d(x), the Dirac delta function. In addition, the complex
term in Eq. ~2.14! implies the existence of traveling wave
solutions in the weight configuration so that the system never
settles to a constant configuration.

This example is instructive for two reasons. First, it cap-
tures all of the dynamics that appear with temporal learning
rules: a stable approach to the fixed point of the spike prob-
ability function in the limit, E→`, and instabilities for all
finite values ofE. Second, it shows that instabilities develop
if the temporal learning rule is not extended in time. The
learning rules of the next two sections will generalize this
case to study the dynamics when the rate of synaptic change
is dependent on the activity at different times.

III. SQUARE RESPONSE FUNCTION

We now investigate the case in which both the learning
rule and response functions are square waves. This case will
show the effect of the learning rule’s temporal dependence.
This form of learning rule exhibits the universality classes
containing the dynamics generated by the all temporal learn-
ing rules such as the biologically realistica-function that
will be treated in the next section. Let

e~x!5H 1/E if xE<x<xE1E,

0 otherwise,
~3.1!

wherexE is a real number that denotes the onset of the in-
teraction~spike arrival!, andE denotes the extent of the in-
teraction ~postsynaptic response to the spike! in time ~see
Fig. 1!. This definition is constructed so that the area under
e(x) is unity. The learning function,L(x), is defined simi-
larly with E replaced byL. To simplify the calculation, we
will choose the fixed point of the spike probability function
to be a constant,f̂ (x)5 f̂ . This choice of the fixed point does
not detract from the generality of the results because we are
primarily interested in instabilities of the equation of synap-
tic change that are dependent on the associative term.

A. Stability: Temporal pattern inverse

Proceeding as in the previous section, we now write Eq.
~2.10! as

^Dw~xi ,t !&52lY(
j

L~xj2xi !„h̄~xj ,t !2h̄eq~xj !…,

~3.2!

whereY is defined following Eq.~2.10!. After substituting in
the solution given in Eq.~2.13!, and using the continuum
approximation, we change variables to arrive at

1

t
5lYE E L~y2z!e~y!e2 ikzdydz. ~3.3!

As before, the integrals are over the nonvanishing segments
of L(y2z) ande(y). Carrying out the integration yields

1

t
5lY

4

k2EL
sinS kE

2 D sinS kL

2 Deik(XE2XL1L/22E/2).

~3.4!

The real part of this expression is positive for allk only if
E5L andXE5XL .

Thus, stability of the temporal learning rule is assured
only when there is an exact match between the learning func-
tion and the response function. Under these conditions, the
synaptic strengths relax until their inputs exactly cancel the
nonadaptive temporal pattern. When the learning parameters
are changed, a Hopf bifurcation is crossed and oscillations
appear.

B. Instabilities: Oscillations and traveling waves

We may generalize our representation of the associative
component of the learning rule by separating the learning
function into a segment that reduces the weights,L2(x)>0
for all x, and a segment that increases the weights,L1(x)
>0 for all x. The average change in weights now becomes

^Dw~xi ,t !&5l f̂ 2l1(
j

L1~x2xi !^n
out~xj ,t !&

2l2(
j

L2~x2xi !^n
out~xj ,t !&, ~3.5!

where L6(x)571/L6 for X6<x<X61L6. Without loss
of generality, we may scale thex-component such thatE
51, and set the beginning of each synaptic response so that
XE50. When we carry out the same calculation as above,
we find that the real part of the decay constant is

Re~t!5
4

Yk2 Fl2

L2
cosS k

2
~2X21L221! D sinS k

2
L2D

2
l1

L1
cosS k

2
~2X11L121! D sinS k

2
L1D GsinS k

2D .

~3.6!

The stable approach to equilibrium of the synaptic strengths
under the influence of the learning rule requires that this
expression is positive for allk.

Two important categories of learning rules depend on the
region of the learning rule that is coincident with the inter-
action. Hebbian learning is defined as a positive synaptic
change during the interaction, and anti-Hebbian learning is
defined as a negative synaptic change. In the first case, the
associative increase of the synaptic strength is coincident
with the response function so thatL151 andX150. Sub-
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stituting these values into Eq.~3.6! we find that Re(t),0 for
some value ofk regardless of our choice of the remaining
parameters. Thus, Hebbian learning causes perturbations
from the fixed point to grow with time so that nonadaptive
temporal patterns are magnified by the adaptive inputs.

The case of anti-Hebbian learning is more stable, as can
be seen when we setL251 andX250. It is possible for
Re(t)>0 for all k if l2.l1 for a wide range of values of
L1 andX1 . In fact, if L151, then

Re~t!5
4

Yk2
@l22l1 cos~kX1!#sin2S k

2D . ~3.7!

This implies stability regardless of the time delay between
the beginning of the synaptic response and the onset of the
weight increase in the learning function. Due to the strong
stability that results from anti-Hebbian learning, when at-
tempting to store a target temporal pattern it is perhaps better
to base learning algorithm on anti-Hebbian learning rather
than the traditional implementations of the Hebbian rule@3#.
However, the anti-Hebbian system will not ‘‘complete’’ an
input pattern, but the stored pattern is recovered through a
reversal of the output when there is no input pattern.

The types of the instabilities reflected by the average local
field, h̄(x,t), are shown in Fig. 2. This figure was generated
by a computer simulation of the model’s dynamics. At the
beginning of the simulation, a nonadaptive input,j(x), is
delivered for the time steps, 45,xn,105, shown by the
solid line. When there is an exact match between the re-
sponse function and learning function@e(x)5L(x) for all
x], and the nonassociative learning rate,l f̂ .0, then the
adaptive input weights adjust to cancel the nonadaptive input
pattern,j(x). The result is trace~A! in the figure. However,

when the learning rule is symmetric about the origin, then
the oscillations shown by trace~B! develop. The left- and
right-moving traveling waves~C and D! are generated by
learning rules wherel25l1 andl f̂ .0. Since these are the
only instabilities that arise in one-dimensional systems, we
have a full classification of the dynamics generated by tem-
poral learning rules.

IV. BIOLOGICAL RESPONSE FUNCTION

In this section we will investigate the dynamics that result
when the learning rule is represented bya functions. This
functional dependence of the learning rule is consistent with
the known biological mechanisms thought to be responsible
for long term changes in synaptic strength@18#. Let e(x) be
defined as in Sec. II, and defineL(x) also as ana functions
with the parameterL replacingE. Using these functions in
the dynamical equation of synaptic change, Eq.~3.3! be-
comes

1

t
5lYE2L2E

0

y

dzE
0

`

dyy~y2z!e2L(y2z)e2Eyeikz.

~4.1!

The integrals can be evaluated to yield

1

t
5lY

E2L2

~ ik1L !2 F2
2~ ik1L !

~L1E!3
1

1

~ ik2E!2
2

1

~L1E!2G .

~4.2!

The conditions for stable solutions can be made more appar-
ent by rescaling thex component in units ofE51. After
some algebra, one finds that the real part of 1/t is negative if,
for some choice ofk,

0.~12L !k61~32L12L222L3!k42~223L13L21L3

1L42L5!k21~L1L21L4!. ~4.3!

This condition is satisfied, and thus the rule is unstable,
for all L.E. If L<E, a narrow band of values exist where
there are no solutions for the wave number such that Eq.
~4.3! is negative~shown in Fig. 3!. Thus, thea-function is
slightly more forgiving than the square response function.
The other results from the analysis for the square response
function still hold, but with the caveat that there is more
tolerance for parameter deviations from an exact match be-
tween the response function,e(x), and the learning function,
L(x), to insure stability.

V. DISCUSSION

The primary goal of this project is to understand how the
dynamics of biological neural networks complicate known
dynamics of adaptive neural networks. We have shown that
given a series of delayed inputs, temporal learning rules lead
to one of four dynamical types:~1! stable approach to an
equilibrium activity pattern;~2! oscillatory instabilities with
a frequency determined by learning rule parameters;~3! trav-
eling waves propagating in the1x direction; ~4! traveling
waves propagating in the2x direction. As long as the time
scale is such that the duration of the synaptic response is not

FIG. 2. Instabilities.The average local field as generated by four
different temporal learning rules in a simulation. In all cases,L2

5L15Es , and the nonadaptive input~solid line! was introduced at

t50. ~A! Only associative enhancement (l150), l f̂ .0, X250,
and t5200. ~B! Same as~A! with X152Es/2, andt51000. ~C!

l f̂ 50, l15l2.0, X150, X25Es , andt520. ~D! Same as~C!
with X252Es and t520.
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negligible, instabilities arise if enhancement of the synapses
is associated with the postsynaptic response. Thus, there is
no Hebbian learning in the traditional sense, only anti-
Hebbian~activity pattern 1! and differential Hebbian learn-
ing ~activity patterns 2 and 3!.

The neural architecture investigated here is far simpler
than that found in most neural networks~biological and ar-
tificial!. Two important elements that are certain to have an
important influence on the dynamics resulting from particu-
lar learning rules are recurrent connections and inhibition.
This study must therefore be considered as a first-order
analysis of the dynamics of temporal learning rules in bio-
logical systems. However, the simplification presented here
preserves what are expected to be the major components of
the dynamics, even if modified by recurrent connections and
inhibition.

The first of these solutions has been observed in the elec-
trosensory system of mormyrid electric fish, and there is rea-

son to believe that the same principle underlies sensory pro-
cessing in several other systems@19#, such as the mammalian
auditory system and the cerebellum@20#. Instabilities would
disrupt the sensory images in these systems@14#. Thus, the
fact that there is a region of stability in Fig. 3 is advanta-
geous for these systems because a precise match between the
associative depression of the learning rule and the response
function is not required for a stable final image.

However, instabilities can have an important function in
some biological systems. Learning rules leading to the trav-
eling wave solution in the2x direction have also been ob-
served, and may serve an important function because this
arrangement would help the brain to associate events that are
separate in time. If a sensory input to a neuron is distributed
in time through a series on adaptable synapses, and a later
input is paired with the initial stimulus, then the activity
initiated by the later input will propagate to the beginning of
the distributed input. Thus the traveling wave solution acts to
link the two events in time@7#. That this type of learning rule
is found in cortical brain structures that are important in the
association of different events is suggestive. One can expect
that the form of the temporal learning rule plays a critical
role in determining the function of each biological neural
network.

Generalizations of the methods presented here will be of
interest to other fields besides neuroscience. The recent in-
terest in disordered systems out of equilibrium provides a
rich background for the separation of the time scales into
different variables. It would be interesting to compute vari-
ables such as energy and state correlations in larger networks
with the learning rules and interactions studied here. The
results of such a computation may provide insight into the
aging of quenched materials under externally applied stress.

ACKNOWLEDGMENTS

The author would like to thank Gin McCollum, and Curt
Bell for discussions and helpful suggestions on the manu-
script. This research was supported in part by National Sci-
ence Foundation Grant No. IBN-9808887.

@1# J. H. Hopfield, Proc. Natl. Acad. Sci. U.S.A.79, 2554~1982!.
@2# J. H. Hopfield, Proc. Natl. Acad. Sci. U.S.A.81, 3088~1984!.
@3# D. O. Hebb,The Organization of Behavior~Wiley, New York,

1949!.
@4# W. Gerstner, R. Ritz, and J. L. van Hemmen, Biol. Cybern.69,

503 ~1993!.
@5# W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner,

Nature~London! 383, 76 ~1996!.
@6# R. Kempter, W. Gerstner, and J. L. van Hemmen, Phys. Rev. E

59, 4498~1999!.
@7# P. D. Roberts, J. Comput. Neurosci.7, 235 ~1999!.
@8# C. C. Bell, V. Han, Y. Sugawara, and K. Grant, Nature~Lon-

don! 387, 278 ~1997!.
@9# H. Markram, J. Lu¨bke, M. Frotscher, and B. Sakmann, Science

275, 213 ~1997!.
@10# L. I. Zhang, H. W. Tao, C. E. Holt, W. A. Harris, and M.-M.

Poo, Nature~London! 395, 037 ~1998!.
@11# D. Caroppo and S. Stramaglia, Phys. Lett. A246, 55 ~1998!.

@12# V. Dotsenko, S. Franz, and M. Me´zard, J. Phys. A27, 2351
~1994!.

@13# R. W. Penney, A. C. C. Coolen, and D. Sherrington, J. Phys. A
26, 3681~1993!.

@14# P. D. Roberts and C. C. Bell, J. Comput. Neurosci.9, 67
~2000!.

@15# C. C. Bell, K. Grant, and J. Serrier, J. Neurophysiol.68, 843
~1992!.

@16# R. S. Sutton and A. G. Barto, inLearning and Computational
Neuroscience, edited by M. Gabriel and J. Moore~The MIT
Press, Cambridge, MA, 1990!, pp. 497–537.

@17# R. P. Feynman,Statistical Mechanics~Benjamin, Reading,
MA, 1972!.

@18# D. Debanne, B. T. Ga¨hwiler, and S. H. Thompson, Proc. Natl.
Acad. Sci. U.S.A.91, 1148~1994!.

@19# C. C. Bell, D. Bodznick, J. Montgomery, and J. Bastian, Brain
Behav. Evol.50, 17 ~l997!, ~Suppl. 1!.

@20# M. D. Mauk, Neuron18, 343 ~1997!.

FIG. 3. Range of stability for learning rules based on thea
function.The shaded regions are solutions fork where 1/t,0. Sta-
bility occurs only for values ofL where the ratioE/L is between 0.4
and 1.
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