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Abstract

Amethod for analyzing the rhythmic behavior of biological neural networks is developed. The

mathematical foundations, based on group theory and graph theory, is explicitly constructed, and

examples are given to clarify the method. An application is made to the brainstem circuitry of the

vestibular system. The physiological mechanisms involved in generating vestibular nystagmus are

characterized, and predictions are made about the phase relations of identi�ed vestibular neurons

with eye movements. Comparisons with other models of vestibular circuitry are discussed and

suggestions are made for improvements to previous models.

1 Introduction

The survival of any animal is dependent on its ability to recognize and generate patterns. The spatial

and temporal patterns of sensory information impinging on the nervous system through many sensory

modalities must be encoded in neural activity patterns to be useful for further processing. Movement

is carried out by generating temporal patterns of motor neuron activity that are spatially distributed

to coordinate various combinations of muscle groups. Sensorimotor organization can be characterized
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by the task of integrating and transforming a�erent neural patterns from sensory stimuli into e�erent

neural patterns for motor output. The process of sensorimotor organization will not be thoroughly

understood until neural activity patterns can be recognized, their interactions identi�ed, and the

relationship between patterned activity and behavior clari�ed.

Neural activity patterns are inuenced by the anatomy, physiology, and a�erent input of each

neural system and are distributed in space and time. Recurrent connections between di�erent systems

can interlock these patterns like cogs in dynamical wheels. The development and application of

appropriate mathematical methods to known properties of the nervous system is needed to determine

the patterns that each system will support, how the patterns interact, and to identify the signature

of such patterns that could be detected with current experimental techniques.

The growing acceptance of the population coding paradigm of neural computation [5] has brought

with it an increasing interest in how coding strategies are implemented in the brain. Synchronous

activity of neurons in a distributed population is a dynamic and e�cient means for encoding infor-

mation in the nervous system [24]. Evidence of coherent, spatiotemporal patterns is accumulating in

various regions of the brain including the visual cortex [1], the olfactory bulb [8], and the cerebellar

cortex [19].

However, patterns of neural activity are only meaningful to the regions with which they commu-

nicate. A di�culty with searching for patterns in experimental data is that often the regularities

are overlooked unless substantiated by theory [6]. The underlying regularities that constitute a pat-

tern are easily washed out of complicated data by statistical averages unless the statistics are tuned

by theoretical predictions. An important duty of the theoretician is to classify the regularities of

phenomena as an aid to experimentalists in analyzing data from subsequent investigations.

The formalism introduced in [22] is able to select the output of any functional network [10] that

may be a subset of the anatomical network by de�ning a rhythm to be a cycle, subject to the

dynamics of the network, where each cell changes state exactly twice. The method uses two-state

neurons and combines various cellular and synaptic properties to formalize transitions between states.

A wide range of network behaviors can be modeled with this method to predict rhythmic behavior in

dynamic biological networks. When modeling small neural networks, there is often a tradeo� between

computational e�ciency and biological details. Reducing the details of a model is not incompatible

with maintaining biological realism because detailed biological models can be highly nonlinear in

their predictions so that a small error in setting the values of model parameters can lead to very

unrealistic predictions. The advantage of using e�cient methods to predict network behavior is that

a wide range of conditions can be tested.
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The formalism used in the this article is able to scan the space of rhythms and identify the

possibilities that can be generated by a given neural circuit. This approach is therefore independent

of any speci�c choice of initial conditions and can be thought of as a technique to identify the global

attractors of the network for rhythmic behaviors. A network may generate a large number of rhythms

so that a measure on the space of rhythms is required to make comparisons and classify the variety of

rhythmic output. The measure investigated in [21] guarantees that functionally similar patterns are

in close proximity of each other and clusters of rhythms form around dominant patterns in rhythm

space. The speci�c biological mechanisms responsible for di�erences between rhythmic classes (or

clusters in rhythm space) can be identi�ed to reveal factors important for maintaining temporal

patterns generated by multiple pattern generators.

The inclusion of cellular properties along with synaptic connectivity allows the formalism to predict

temporal patterns generated by biological networks [22]. By including physiologically realistic cellular

properties such as endogenous oscillation and postinhibitory rebound, a computationally simple model

was used to predict the neural activity of dynamic biological networks (an example such networks

are discussed in [17]). The next step in such an analysis would be to understand what biological

mechanisms are involved in generating rhythms, or under what conditions these rhythms might be

observed. Since the mechanisms responsible for each transition are explicit in the formalism, the

juncture points can be identi�ed at which two rhythms diverge to establish their identity in di�erent

behavioral classes.

The purpose of this article is to establish a mathematical foundation for investigating the interac-

tions among patterns of neural activity in sensorimotor organization. In contrast to conduction-based

modeling, the details of the membrane conductances are discretized to greatly reduce the computa-

tional load while maintaining the essence of relevant biological mechanisms. We test for rhythmic

behavior in biological neural networks, and develop a general method to classify the possible pat-

terns generated by a given network with known synaptic connectivity and cellular properties. Upon

de�ning a suitable metric, the set of patterns form a metric space where functionally similar patterns

appear in clusters, and each cluster de�nes a functional mode of the system.

In the next section, the mathematical fundamentals are explained and basic de�nitions are given.

The following section applies the formalism to rhythmic behavior of the vestibular system, and ana-

lyzes bilateral neural networks to provide a mechanism for the generation of vestibular nystagmus.
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2 Mathematical Methods

In well studied biological networks, many of the transitions between patterns of neural activity are

already known in the form of synaptic or cellular properties which induce changes in the �ring patterns

of cells in the network. Conceptual machinery will be developed in the following to help elucidate

how these properties work together to generate the observed behavior of the network. Traditional

modelling studies develop complicated systems of di�erential equations, and then probe the parameter

space on a point-by-point basis to examine the behavior of the model. Here, we depart from traditional

methods by examining probabilities of changes in the behavior determined by regions of the parameter

space.

Neural States and Transitions.

The generation of temporal patterns in the central nervous system often drive in motor circuits that

require sustained bursts of action potentials to control muscle activity. The neurons participation in

these circuits utilize slow responding currents to generate plateau potentials, long depolarized states

that produce a burst of action potentials [16]. The output states of model neurons in the approach

used here will be described as McCulloch-Pitts neural units [20], cn, where n = 1; : : : ; N , and N is

the number of neural units in a given network. Each neuron Associated with it an indicator of the

membrane potential that takes its values in a binary state space, ~cn 2 Z2, where here the excited

state (~cn = 1) means that the neuron is �ring a burst of action potentials.

A set of N 2-state neurons, in combination with synaptic connections and cellular properties, is

called a network, and is denoted; N = fc1; c2; : : : ; cN ;S; Cg, where S is a set of synaptic connections

and C is a set of cellular properties. The two states of individual neurons will be represented by the

2-dimensional vectors:

cn =

2
64
1

0

3
75 or

2
64
0

1

3
75 : (2.1)

A neural state is de�ned by P.Getting [10] to be the spatial distributation of activity within the

network at any given moment in time. For example, if the set of neurons are given as

� = fc1 =

2
64
1

0

3
75 ; c2 =

2
64
0

1

3
75 ; c3 =

2
64
1

0

3
75 ; : : : ; cN =

2
64
1

0

3
75g; (2.2)

then neuron c1 is in a depolarized state, c2 is in a polarized state, etc. We will abbreviate the above

neural state as �n = [101 : : : 1]. The superscript denotes which neural state so that in a network of
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N neurons, n = 1; : : : ; 2N . This set of 2N neural states form the basis of a vector space, Vsp, that

represents all possible neural states.

Operators may now be de�ned that act on the neural states. For each element of S and C there

corresponds an operator, O, which transforms each neural state into a linear combination of states,

O : Vsp ! Vsp,

O�i =
2NX
j=1

aj�
j (2.3)

The coe�cients, aj, are weighting factors that will be used to set the relative strengths of the synaptic

and cellular properties. It should be noted that cellular and synaptic properties may have di�erent

time scales, so the coe�cients can be time dependent. Since this is a collection of 2-state systems,

the operators will be de�ned in terms of the standard Pauli spin matricies as given in [7]; �1; �2; �3,

and the 2� 2 identity matrix, 1. A convenient set of operators from which to build the synaptic and

cellular operators are given by

H� =
1

2
(�1 � i�2)

L� =
1

2
(1� �3) (2.4)

It should be noted that these operators do not commute so one must be careful with their ordering

when constructing synaptic and cellular operators. The operator H+ may be considered as a hyper-

polarization operator which turns o� a neuron in the excited state, and it is paired with H� which

depolarizes resting a neuron:

H+
n [c1 : : : cn�1 1 cn+1 : : : cN ] = [c1 : : : cn�1 0 cn+1 : : : cN ];

H�

n [c1 : : : cn�1 0 cn+1 : : : cN ] = [c1 : : : cn�1 1 cn+1 : : : cN ]: (2.5)

The other operators are projection operators which measure whether a neuron is in an excited or

resting state:

L+
n [c1 : : : cn�1 1 cn+1 : : : cN ] = [c1 : : : cn�1 1 cn+1 : : : cN ];

L�

n [c1 : : : cn�1 0 cn+1 : : : cN ] = [c1 : : : cn�1 0 cn+1 : : : cN ]: (2.6)

Suppose there is a synaptic connection between neurons m and n in the network N where cm

represents a presynaptic cell cm represents a postsynaptic cell. One may then de�ne the following

synaptic operators:
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� Inhibitory: SImn = smnI H�

nL
+
m

� Excitatory: SEmn = smnE H+
nL

+
m

� Gap junction: SGmn = smnG (H+
nL

+
m +H�

nL
�

m +H+
mL

+
n +H�

mL
�

n )

� Recti�er junction: SRmn = smnR (H+
nL

+
m +H�

nL
�

m)

For example, if the synapse is inhibitory, then the operator acts on neural states as:

S
I
mn[c1 : : : cm�1 1 cm+1 : : : cn�1 1 cn+1 : : : cN ] = smnI [c1 : : : cm�1 1 cm+1 : : : cn�1 0 cn+1 : : : cN ]

S
I
mn[c1 : : : cm�1 1 cm+1 : : : cn�1 0 cn+1 : : : cN ] = 0

S
I
mn[c1 : : : cm�1 0 cm+1 : : : cn : : : cN ] = 0: (2.7)

The real coe�cients smnI , smnE , smnG , and smnR are useful to assign the strength of the mechanism

represented by the operator, and these coe�cients may be time dependent. The �rst two of the

above operators are commonly associated with chemical synapses with time courses that are longer

than the second two which represent electrical synapses. At the �rst stage of a rhythmic analysis, it

is customary to set all of the operator coe�cients to unity.

In a biological neural network, membrane currents may cause neurons to terminate a burst of

action potentials spontaneously after a period of time, or remain tonically active. A third possibility

is that a neuron may oscillate between quiescence and bursts. To each cell in the network we assign

one of the following operators to reect these properties.

� Plateau termination: CPT
n = cnPTH

�

n

� Tonic Activity: CTA
n = cnTAH

+
n

� Endogenous oscillations: CEO
n = cnEO(H

+
n +H�

n )

One more cellular property plays a central role in many pattern generating networks. If a neuron

is in a resting state and is concurrently subjected to a inhibitory current, often it will adapt to the

added current, thus holding the membrane potential at a preferred value. If the inhibitory current is

then removed, the cell may rebound to an excited state. This phenomenon is called postinhibitory

rebound [3] and is assigned the following operator:

� Postinhibitory rebound: CPIR
mn = cmnPIRH

+
nL

�

m
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There are two indices because it is presently assumed that inhibition is a result of a postsynaptic

inhibitory current, and the operator L�

m insures that the presynaptic cell is no longer in an excited

state. This operator can only be applied in combination with an operator that silences the presynaptic

neuron (cm) which has been inhibiting the postsynaptic neuron (cn).

In order to use these operators to analyse a biological neural net one takes a sum of all the

synaptic and cellular properties and applies the resultant operator to any neural state. To show how

this procedure is carried out in practice, we will take the not-so-realistic (though standard) example

of two mutually inhibitory neurons (Fig. 1A). The operator for this network takes the form:

O = S
I
12 + S

I
21 +C

PIR
12 +C

PIR
21 +C

PT
1 +C

PT
2 +C

PIR
12 C

PT
2 +C

PIR
21 C

PT
1 (2.8)

This operator acts on the neural states, [c1; c2] as follows.

O[11] = (s12I + c2PT )[10] + (s21I + c1PT )[01]

O[10] = c1PT [00]

O[01] = c2PT [00]

O[00] = c21PIR[01] + c12PIR[10] (2.9)

Thus, a list is generated of the transitions from each neural state under the inuence of the connec-

tivity and cellular properties. The probability of each transition is the coe�cient divided by the sum

of all the coe�cients included in the sum. For instance, the transition probability for [11]! [10] is

P([11]! [10]) =
s12I + c2PT

s21I + c2PT + s12I + c1PT
: (2.10)

Physiological data may be used to set the values of these variable to determine the transition proba-

bilities of each transition.

Rhythms and Rhythmic patterns.

The application of the synaptic and cellular operators on states of the network N generates a set of

transitions between neural states. Each transition is denoted by (�i; �f)M , where �i is the initial state

of the transition, �f is the �nal state, and M 2 fI; E;G;R; PT; TA;EO; PIRg is the mechanism

responsible for the transition. The set E = f(�i; �f )M ; for any Mg is formed by the set of unique

directed edges such that the speci�cation of the mechanism is suppressed. Combining this set with

the set of neural states, V, forms the transition graph of the network, G(V; E). The transition graph

for the half-center oscillator is shown in Fig. 1B.

An important subgraph ofG(V; E) for the study of rhythmic behavior is the graph that is generated

by introducing current thresholds for the neurons of the network, and eliminating those transitions
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that violate a rule based on the sum of currents in each cell [20]. For instance, if the network is

in a state where one of the neurons is heavily inhibited by synaptic currents, then it is biologically

implausible that the cell would undergo a transition from a silent state to �ring a burst.

If postsynaptic currents are labeled by integers, in 2 Z, for each neuron n, then in > 0 represents

an excitatory and in < 0 an inhibitory postsynaptic current. A value C may be assigned to each type

of transition such that C > 0 implies that the transition in which a neuron changes from an inactive

to an active state and C < 0 otherwise. A transitions is eliminated by the synaptic constraint if

C +
X
n

in � �; for C < 0

C +
X
n

in � ��; for C > 0 (2.11)

where � is a threshold and the sum is over all active presynaptic neurons.

In order to study complicated rhythms in all but the simplest of networks, we will need a notation

to keep track of cycles on the transition graph and aid in the classi�cation of multiple rhythms.

The de�nition of rhythm will be formalized using techniques found in [4], resulting in a method to

generate the functional rhythms of a network. The �rst step is to de�ne what is meant by a path

on the transition graph (for an alternative approach, see [13]). Let E� be the set of �nite sequences

of elements of E juxtaposed; E� = f(�f1 j�i1)(�f2j�i2)(�f3 j�i3) � � � (�fk j�ik) : (�faj�ia) 2 E ; a 2 Z
+g [ �,

where � represents the null sequence. A path on the transition graph is an element of E� where the

transitions are contiguous so that �fa = �ia+1 for all juxtaposed elements. We now need a function

that acts on elements of E� which will count how many times each cell of the network has changed

state, and what the nature of that change is. Let N be the number of neurons participating in

the functional network. We de�ne the label function ` : E� ! Z
N � Z

N : If (�f j�i) 2 E , where

�i = [~c1 : : : ~cN ], and �f = [~c01 : : : ~c
0

N ], then `(�f j�i) = (b+1 : : : b
+
N ; b

�

1 : : : b
�

N ), where

b+n =

8><
>:

1 if c0n � cn = 1

0 otherwise

b�n =

8><
>:

1 if c0n � cn = �1

0 otherwise
(2.12)

The function ` is extended to all of E� as follows:

`(S1S2) = `(S1) + `(S2) (2.13)

for S1; S2 2 E
� and `+' is vector addition in Z

N . Since the transition operators have been de�ned to

allow only one neuron to change with each transition, the function ` given by eq.(2.12) maps elements

of E to vectors with all components equal zero except one that is unity.
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We next introduce a path algebra which is a set P with two binary operators, a join operation and

multiplication obeying the rules below [4]. For our present purposes, the set P is the power set of E�;

the set of sets of elements of E�. The binary operators are de�ned as follows:

� The join operation (_) is idempotent, commutative, associative, and is taken here to be set

union.

� Multiplication (�) is associative, and distributive over _, and is de�ned here for S1; S2 2 P by

concatenation:

S1 � S2 = f�1�2 : for all �1 2 S1; �2 2 S2 and

`(�1�2) = (b+1 : : : b
+
N ; b

�

1 : : : b
�

N); b
�

n � 1 for all ng; (2.14)

This rule allows only two changes of state on the path for each neuron. A path algebra has, by

de�nition, a zero element which is the empty set:

� _ S = S for all S 2 P (2.15)

� � S = � = S � � for all S 2 P:

In addition, a path algebra contains a multiplicative identity element which is the null path � 2 E :

� � S = S = S � � for all S 2 P : (2.16)

We may now state the de�nition of an N -rhythm as an 2N -cycle of transitions

� = (�f1 j�i1)(�f2 j�f1) : : : (�i1 j�i2N ) (2.17)

such that

`(�) = (1; : : : 1; 1; : : : ; 1): (2.18)

Every graph G = (V; E) with h vertices and the path algebra P has an associated adjacency

matrix, A = [aif ] where i; f = 1; 2; : : : ; h = 2N and the entries are de�ned by;

aif =

8><
>:
f(�f j�i)g if (�f j�i) 2 E

� if (�f j�i) 62 E
(2.19)

The adjacency matrix is useful for calculating paths on the graph G. The de�nition of the path

algebra given above is designed to calculate rhythms of a network. Matrix multiplication is de�ned

9



in terms of the path algebra in analogy to matrices of real numbers where sums are replaced by the

join operator so that the result is a matrix whose elements are members of P . By taking powers of

the matrix Ak, the entries along the diagonal represent k-cycles satisfying the rule that no neuron has

changed state more than twice. Thus, the set of N -rhythms containing the neural state �i is given

by the ith entry on the diagonal of the matrix A2N :

Ri =
_

j1;j2;:::;j2N�1

f(�j1 j�i)g � f(�j2 j�j1)g � � � f(�j2N�1 j�j2N�2)g � f(�ij�j2N�1)g: (2.20)

where
W
j1;j2;:::;j2N�1

represents the join of all values of the indices.

The set R of all N -rhythms generated by a network is given by the join R =
W
iRi. Because the

join operator is idempotent, the duplicate cycles drop out of the series. Two rhythms are considered

equivalent if the sequences of their neural states are identical. The maximum number of possible

rhythms that can be generated by a network containing N neurons can be computed by considering

that each state in the transition graph shares an edge with exactly N other states. Each rhythm of

the network is a 2N -cycle of transitions because each transition has a label with a single 1 in the

appropriate position. Thus, each rhythm can be associated with a cycle of 2N such labels, and in

fact, there is a one-to-one correspondence between the rhythms in the given network and the cycles

consisting of all 2N labels that have a single 1. To count these cycles, the number of orderings if

these labels is equal to the number of permutations of 2N elements (2N !). Since there is a symmetry

of rotations through the cycles, the �nal answer of (2N � 1)! rhythms is arrived at by dividing out

the symmetry.

Most networks will generate a large number of rhythms so it is useful to have a means of comparing

di�erent rhythms of a �xed number of neurons. By comparing similar rhythms we will then be able

to classify the patterns generated by a given network into groups that reect a similar property.

The functional similarity relevant to many neural systems is the sequence of bursts generated by the

composite neurons. Comparisons between rhythms can be accomplished by introducing a distance

function onto the set of rhythms to quantify the functional di�erences between them. For each

rhythm, there is a sequence of 2N transition vectors, pi 2 Z
N
2 , i = 1; : : : ; N , which are N -tuples

of zeros and a 1 in the location of the neuron that changed state. Note that di�erent sequences of

neural states may have the same sequence of transition vectors so that the transition vectors do not

uniquely determine a rhythm. It is often convenient to write rhythms with the transition vectors

inserted between the states as in the following where we show only 3 states of a rhythm;

� � � [: : : ~cm : : : ~cn : : :]pm[: : : ~c
0

m : : : ~cn : : :]pn[: : : ~c
0

m : : : ~c0n : : :] � � � (2.21)
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We may transform this rhythm into another by transposing the vectors pm and pn, changing the

intervening neural state accordingly;

� � � [: : : ~cm : : : ~cn : : :]pn[: : : ~cm : : : ~c0n : : :]pm[: : : ~c
0

m : : : ~c0n : : :] � � � (2.22)

Since these two rhythms di�er by only one neural state, it is natural to consider them to be neighbors

in the set of rhythms. Thus, distance in rhythm space is de�ned as: The distance between two rhythms

is the minimum number of adjacent transpositions of transition vectors that transforms one rhythm

into the other [22]. It should be stressed that this kind of distance di�ers from the Hamming distance

which measures the overlap between two strings of binary numbers. All rhythms that are neighbors

in rhythm space would have a Hamming distance of two.

The reason for choosing this de�nition is that it implies that two neighboring rhythms have a

strong functional similarity. Except for where they di�er, they share all of the same transitions, and

thus the same temporal pattern. The di�erence is the detour through the transition graph where their

paths separate for a single neural state in the sequence, and then rejoin after the following transition.

One is often interested in the activity of motor neurons, or neurons that drive motor neurons, so that

similarities in rhythm space translates into similarities in movement patterns of the organism.

An interesting example is provided by the network shown in Fig. 2A [18, 14]. Since this network is

anatomically symmetric under cyclic rotations of the neurons, we may use the dynamical equivalences

classes [11] in addition to the functional classi�cation presented here. This is also a good example to

demonstrate the variation of rhythmic behavior under changes of cellular properties.

Let the network be de�ned by N4 = f1; 2; 3; 4;S; Cg where

S = f S
I
1, 4;S

I
4, 3;S

I
3, 2;S

I
2, 1;

S
I
1, 3;S

I
3, 1;S

I
2, 4;S

I
4, 2g (2.23)

and

CTA = fCTA
1 ;CTA

2 ;CTA
3 ;CTA

3 g: (2.24)

Without the application of constraints, this network generates 1715 rhythms. This number should be

compared with the maximum of 7! = 5040 rhythms that can be generated by a 4-cell network. Since

the network is highly inhibitory, constraints will greatly reduce this number. Under the synaptic

constraint with the threshold � = 0, the network generates one rhythm as shown in Fig. 2B. Note

that the rhythm is symmetric under cyclical permutations of the neurons.

11



Instead of allowing the network to be driven by tonically active neurons, we may investigate the

results of postinhibitory rebound as a driving mechanism. In this case we let the set of cellular

properties be described by the set,

CPIR = f C
PT
1 ;CPT

2 ;CPT
3 ;CPT

3 ;

C
PIR
1 ;CPIR

2 ;CPIR
3 ;CPIR

3 g: (2.25)

With these cellular properties, the network generates 204 rhythms without constraints and, if con-

strained with � = 0, then we �nd 16 rhythms that fall into 12 clusters. Due to the symmetry of

the network, we may classify these clusters into 5 dynamical equivalence classes [11, 12] of whose

members are equivalent under cyclical rotations of the neurons. Representatives of each equivalence

are shown in Fig. 2C, where rhythms 1a and 1b form a cluster of two. Classes 2 and 5 have only

one member, classes 1 and 3 have 4 members each, and class 4 has 2 members.

In the above example, we have de�ned clusters in rhythm space to be sets of rhythms that

�ll contiguous regions with a neighborhood of one surrounding each rhythm. In larger networks, it

becomes advantageous to expand the neighborhood to larger distances between neurons when de�ning

clusters. This is because in large networks there become so many ways two rhythms may di�er that

functional similarity may be preserved over greater distances in rhythm space. The rhythms of Fig.

2C are marked for both nearest neighbors (solid line between 1a and 1b) an

3 Application: Vestibular Nystagmus

The method described in this article has been previously used to predict the temporal pattern gen-

eration of small biological networks in invertebrate preparations [22, 21]. This approach to temporal

pattern generation is also useful for vertebrate system with large numbers of neurons arranged in

parallel circuits because of the probabilistic interpretation of the clusters in rhythm space. In a single

small neural network, a cluster of rhythms is interpreted as variations on the rhythm that the network

generates, and if there are many similar variations, a large cluster, that there are many reinforcing

mechanisms at work to stabilize the temporal pattern.

In an ensemble of neurons where there are many parallel neural modules, then the clusters in

rhythm space represent similar rhythms that occur simultaneously. These types of parallel neural

modules are ubiquitous in the central nervous systems of vertebrates. The rhythm space method

has successfully predicted the synchrony of cerebellar climbing responses due to gap junctions in
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the inferior olive [23]. In the following, the circuitry in the brainstem that is involved in generating

vestibular nystagmus is investigated, and the essential elements of the circuit are revealed.

Rhythmic patterns of bilateral vestibular circuitry.

The activity of neurons in the vestibular nuclei drive ocular-motor neurons to stabilize gaze during

movements of the head. A sudden change of the input level from the vestibular end-organs, such as a

complete loss of input following a lesion in the eighth nerve containing primary vestibular a�erents,

causes a rhythmic movement of the eyes, or nystagmus. Most studies concerning vestibular nystagmus

treat the two phases of the behavior separately. Here we explore the possibility of brain stem circuitry

that is responsible for generating the full rhythm.

In order to investigate whether a bilateral circuit exists that contributes to the maintenance of

vestibular nystagmus, we evaluate the rhythmic patterns supported by the circuit consisting of the

vestibular nuclei carrying head velocity information, the trochlear nucleus, and the inferior oblique

division of the oculomotor nucleus. This circuit has been known to be instrumental in producing

oblique nystagmus [2].

The space of rhythms for this vestibular circuit (Fig. 3A) was scanned to determine the potential

rhythmic behavior that it could sustain. Functionally similar rhythms are manifest as the most

prominent clusters in rhythm space. Rhythm space analysis shows the kind of rhythmic behavior

that is dependent on the speci�cs of the functional networks, and which networks, if any, are common

to several functional states of the system.

Although the unilateral circuit given in [2] does not support rhythmic behavior, a bilaterally

symmetric version of it generated two clusters of rhythms shown in Fig. 3B. The rhythm clusters

appear when there is an asymmetry between the right and left primary a�erent vestibular input. In

the clusters, there is an asymmetry in the length of activation of the neurons driving the inferior

oblique motor neurons. This asymmetry corresponds to and contributes to the asymmetry of the

fast phase verses the slow phase in nystagmus. The two rhythm clusters show a di�erence in motor

neuron phasing (Fig. 3C).

More recently, a bilateral model by Galiana and Oterbridge (1984) based on physiological data has

proven successful for predicting the linear dynamics of the slow phase of vestibular nystagmus [25, 15].

Although this bilateral model [9] is presently considered as the standard in bilateral modeling of the

brainstem circuitry responsible for the dynamics of vestibular nystagmus, a rhythm space analysis

�nds that no rhythms are generated by this model without modi�cation.

The necessary modi�cation are found upon closer inspection of the bilateral version of the Baker
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and Berthoz (1974) model. The essential pattern generating circuit is shown in Fig. 4A, where the

other neurons in the previous �gure only follow the activity of this circuit. One cluster in rhythm

space is generated by this circuit, as shown in Fig. 4B. A comparison with the bilateral circuit given in

Smith and Galiana (1991) reveals the missing element. Although there is a recurrent excitatory input

to the vestibular nuclei representing \e�erent copy", the missing internal detail within the vestibular

nuclei lacks inhibitory interneurons. These interneurons provide essential hyperpolarization in the

rhythmic model so that rebound properties of other neurons in the vestibular nuclei drive the rhythmic

cycle of the vestibular nystagmus.

4 Discussion

This article has developed a method to analyze rhythmic patterns that are generated by neural

circuits. The activity of a network is represented by neural states that are capable of transitions to a

�nite set of other states. Cycles on the graph of transitions are used de�ned rhythms that represent

the temporal activity patterns of neural circuits. This method can be used to predict the rhythmic

behavior of small networks found in invertebrates [22, 21] or ensembles of neurons found in vertebrates

[23]. The di�erence is in the interpretation of the rhythm clusters generated by the method.

The analysis of brainstem circuitry responsible for vestibular nystagmus reveals the utility of this

approach in the study on the neural basis for motor behavior. Linear approaches to vestibular reexes

do not predict the switching from the slow phase of the nystagmus to the fast phase. But here the

vestibular nystagmus is treated as a whole rhythm and physiological mechanisms of the switching

between phases are revealed. Although each phase of the nystagmus recruits di�erent subsystems of

the visual system, the imbalance of vestibular input that is known to be responsible for nystagmus is

shown to involve circuitry within the vestibular nuclei to switch between each phase.

A deeper analysis would require further data to estimate the transition probabilities and the

likelihood of each rhythm and cluster. This further analysis would predict the neural activity that

would be recorded in the vestibular nuclei following a lesion to the eighth nerve in animal preparations.

In the present form of the analysis given above, the phase response of GABAergic interneurons in the

medial vestibular nuclei during vestibular nystagmus has been predicted for the �rst time.

A limitation of this approach is that the details of eye movements during each phase of nystagmus

are absent. The rhythm space method is most concerned with the nonlinear switching between neural

states, and the cyclical patterns that result. The dynamics of the slow phase has been analyzed using

linear systems approaches (see, for example [25]) and the present study only addresses the rhythmic
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character of vestibular nystagmus.

The most important contribution of this approach will be for revealing of synaptic connections

and cellular properties in neural systems where exact experimental data is lacking. For instance,

the observation of phase relations between recordings of bursts of action potentials from single cell

recordings can be compared with motor activity as in the previous section. New, unrecognized synap-

tic connections to recorded neurons can be implied from these methods by deducing the necessary

mechanisms for the generation of observed rhythms.
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Figure 1: Half-center oscillator. (A) Network of 2 neurons with mutual inhibitory synaptic connec-

tions. (B) Transition graph of the half-center oscillator with the two types of transitions: Plateau

termination (PT) and postinhibitory rebound (PIR).

Figure 2: Model rhythm generating network. (A) Network of 4 neurons with inhibitory synaptic

connections. (B) The rhythm generated by the network under synaptic constraints (� = 0) and

each neuron is tonically active. (C) Representative rhythms of the network driven by postinhibitory

rebound (see text for details). Solid lines between rhythms indicate a distance of one in rhythm space

and broken lines indicate a distance of two.

Figure 3: Rhythmic patterns supported by a bilateral vestibular circuit are responsible for oblique nystagmus.

The circuit (A) is the bilaterally symmetric version of the schematic diagram given in [2] describing the

pathways responsible for oblique nystagmus. The circuit supports two rhythm clusters (B). One cycle of

the rhythm is shown in each case, with increasing activity being indicated by darker shading. Neurons of

the right (left) medial nucleus (R(L)M) and the right (left) superior nucleus (R(L)S) are driven by the eight

nerve (VIII). These neurons interact through interneurons found in the right (left) medial nucleus (R(L)MI).

The rhythms of the vestibular nuclei drive the left trochlear (LTRO) and right inferior oblique (RIO) motor

neurons. The asymmetry between RS and LS contribute to the di�erence between the fast phase and slow

phase of nystagmus. The two rhythm clusters have a slight di�erence in motor neuron phasing, as shown in

(C).
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Figure 4: The essential circuitry for generation of the vestibular nystagmus.(A) The bilateral circuit in Fig.

3A without the follower motor neurons. Unilateral input from the left eighth nerve (VIII) excites secondary

neurons of the left medial (LM) vestibular nucleus. An excitatory projection of these neurons crosses the

midline and makes contact with interneurons of the right medial vestibular (RMI) nucleus that in turn inhibit

the secondary neurons of the right medial nucleus (RM) that receive excitatory input from the right eighth

nerve, but that input is absent in this case. These neurons send an excitatory projection across the midline

to interneurons in the left medial (LMI) nucleus that inhibit the LM neurons. (B) The cluster in rhythm

space generated by the circuit in (A) contains 7 rhythms. Without vestibular input, the only way for the

RM neurons to �re action potentials is by rebounding after release from inhibition by the RMI neurons.

Thus, without postinhibitory rebound, no rhythms are generated by the circuit. (C) The bilateral model

of Galiana and Oterbridge (1984). Neurons of the left (right) vestibular nuclei (L(R)V) inhibit neurons of

the left (right) abducens nucleus (L(R)A), that inhibit motor neurons of the left (right) oculomotor nucleus

(L(R)O). Excitatory connections are made across the midline. The self excitation of the LV and RV neurons

represent e�erent copy. To generate rhythmic oculomotor behavior, such as vestibular nystagmus, the circuit

requires inhibitory interconnections within the vestibular nuclei.
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