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Abstract

A general method is presented to classify temporal patterns generated by rhythmic biological

networks when synaptic connections and cellular properties are known. The method is discrete

in nature and relies on algebraic properties of state transitions and graph theory. Elements

of the set of rhythms generated by a network are compared using a metric that quanti�es the

functional di�erences between them. The rhythms are then classi�ed according to their location

in a metric space. Examples are given and biological implications are discussed.

1 Introduction

The development of theoretical tools is essential for a thorough understanding of complex biological

systems. Networks of interconnected neurons are systems that can display very complex dynamics.

Much of the literature concerning neural networks focuses on the strengths of synaptic connections

(Hebb, 1949) when analyzing network dynamics. The emphasis on synaptic currents tends to down-

play other membrane properties of the neurons that make important contributions to the activity of

biological networks (Llin�as, 1988; Maynard, 1972; Mulloney and Selverston, 1974). In recent years

it has become clear that the modulation of cellular properties is as important to the behavior of a
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biological network as the e�cacy of synaptic connections. In the ongoing behavior of an animal, neu-

ral modulation by hormones or neuropeptides is crucial to the maintenance and control of neuronal

activity (Harris-Warrick et al., 1992). A formalism designed to aid in our understanding of biological

neural systems should take into account such modulation for a thorough description of behavior in

speci�c applications.

Recent experimental studies of central pattern generators have revealed that the rhythmic output

of small neural circuits can switch between elements of a restricted group of stable patterns (Dickinson

and Moulins, 1992). In fact, the idea of a pattern generator as an anatomically distinct unit has given

way to considerations of functional multiple-pattern generators that are dynamically sculpted out of a

�xed anatomical network (Getting, 1989). These dynamic biological networks appear to be controlled

by both di�use application of neuromodulators and direct synaptic stimulation of target cells.

Many modelling studies designed to explore the behavior of small neural networks have concen-

trated on the membrane conductances (Hodgkin and Huxley, l952) of the component neurons. In

these models, the details of multiple membrane currents in the component neurons are simulated

using coupled di�erential equations. Although these e�orts reveal the behavior of a network under

perturbations of system parameters, the computational overhead of these models forbids a full classi-

�cation of rhythmic output. One may reduce the computational load while maintaining the essence

of relevant biological mechanisms by discretizing the details of membrane conductances.

The logical complexity of discrete networks was �rst analyzed by McCulloch and Pitts (McCulloch

and Pitts, 1942) in their study of neural networks. These early studies have since been expanded

into a general study of discrete automata following technological advances in digital computers. A

large class of discrete systems involves cellular automata (Wolfram, 1986; Kau�man, 1993) which

have been shown to generalize to discrete neural network models (Garzon, l990). Methods to analyze

these systems have proven useful in the study of general complex systems (Weisbuch, 1991), but such

methods must be adapted to the idiosyncrasies of multiple-pattern generators.

Deterministic models, such as Boolean automata, have been used to make speci�c predictions

about the relation between a network's architecture and its output. Classi�cations of networks have

been made using these methods based on symmetries (Glass, l975a) and the output dynamics (Wuen-

sche and Lesser, 1992) of deterministic networks. However, deterministic systems do not include mul-

tiple mechanisms that are needed to predict all possible output patterns of a given biological network.

In order to scan the range of possibilities, one must study less tractable, non-deterministic networks.

In a non-deterministic automata, each state may make a transition to more that one �nal state.

This implies that the mechanisms do not uniquely determine the outcome following any point in the
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dynamics of the system. In terms of symbolic dynamics, these systems can be described by shifts of

�nite type (Lind and Marcus, 1995). Methods from automata theory have been applied to continuous

state dynamical systems in order to analyze their computational complexity (Crutch�eld, l994). Such

methods have recently been applied to neural network models yielding insights into the mechanisms

implied by their input/output behavior (Casey, l996), and applied to study the computations of

biologically plausible networks. (Kentridge, l994).

However, the previous research has proven di�cult to use by experimentalists who wish to know

what temporal patterns a speci�c dynamic biological network is capable of generating. Although

discrete methods have been applied to study central pattern generators (Caianiello and Ricciardi,

l967; Glass and Young, l979; Huerta, l996), a method to classify rhythmic behavior in terms of

relations between di�erent temporal sequences is a necessary addition to the theoretician's toolbox.

The purpose of this letter is to introduce two new tools for the study of multiple-pattern gener-

ators. First, cellular properties of constituent neurons are expressed as discrete transitions on equal

footing with synaptically induced transitions. Secondly, similarities between rhythmic patterns are

quanti�ed in order to classify the possible patterns generated by a given network with known synap-

tic connectivity and cellular properties. The set of rhythmic patterns form a metric space where

functionally similar patterns appear in clusters, and each cluster de�nes a functional mode of the

system. Signi�cant biological mechanisms that di�erentiate clusters can then be investigated to help

understand how the network navigates through behavioral options.

In the next section we make the necessary de�nitions for this approach and present the scheme

for identifying rhythmic patterns. The following section investigates the properties of the space of

rhythmic patterns followed by a section with examples of dynamic biological networks. We conclude

with a discussion of some open mathematical questions and biological implications of this approach.

2 Neural States and Transition Graphs

Central pattern generators are often found in motor circuits that require sustained bursts of action

potentials to control muscle activity. Many of the neurons that participate in pattern generation

exhibit plateau potentials; long depolarized states that arise from a bistable membrane potential

(Hartline, 1987). In the language of Rinzel (Rinzel, 1987), the methods developed here focus on the

slow mechanisms involved in the generation of rhythmic behavior. Individual action potentials are

considered to have only a secondary e�ect on pattern generation.
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2.1 Neural States. We will describe the output state of our model neurons in terms of standard

McCulloch-Pitts neural units (McCulloch and Pitts, 1942), cn, where n = 1; : : : ; N , and N is the

number of neural units under consideration. Associated with each neuron is an indicator of the

membrane potential that takes its values in a binary state space, ~cn 2 Z2, where here the excited

state (~cn = 1) means that the neuron is �ring a burst of action potentials.

A network N is a set of N 2-state neurons augmented with synaptic connections and cellular

properties; N = fc1; c2; : : : ; cN ;S; Cg, where S is a set of synaptic connections and C is a set of

cellular properties. Both S and C formalized as transitions between states and the elements of S

sometimes take on additional parameters that denote their e�cacy. A neural state (or con�guration

(Botelho and Garzon, l991)) is de�ned by Getting (Getting, 1989) to be the spatial distribution of

activity within the network at any given moment in time. For example, if at time t neuron c1 is �ring

a burst of action potentials, c2 is silent, c3 is silent, etc., then the neural state will be represented

as �(t) = [~c1~c2~c3 : : : ~cN ](t) = [100 : : :](t). The set of time-independent neural states (ignoring the

time component) is denoted by V = f�1; : : : ; �hg, where h = 2N . We have given the neural states a

subscript to identify them without an explicit reference to time.

The cellular properties and synaptic connections provide the mechanisms (M) of the network

that induce transitions between neural states. For each element M of S and C there corresponds

a collection of ordered pairs of neural states that represent transitions, fM(� 0

1j�);M(� 0

1j�) : : :g. In

each transition, M(� 0j�), the initial state is given by �, the �nal state is � 0, and the mechanism that

presently accounts for the transition is labeled by M .

2.2 Transition Graphs. The full set of transitions generated by all elements of S and C in

the network N is denoted by E . Together with the set of neural states V, the transitions de�ne a

directed graph G(V; E) that represents the dynamics of the network (Carr�e, 1979). In the graphical

representation, the set V contains the vertices and the set E contains the edges. Since there is typically

more than one out-going edge from each vertex in G(V; E), the system is non-deterministic and can

be thought of as a Markov chain where the precise values of the non-vanishing probabilities are not

speci�ed (sometimes called a topological Markov chain (Lind and Marcus, 1995)1).

We now de�ne useful cellular properties and their associated transitions. Cellular properties are

used here in the sense that there are transitions that individual neurons can undergo independently

of external in
uences arising from synaptic connections. Depending upon the conductance properties

of a biological membrane, individual neurons can either spontaneously terminate a plateau, remain

tonically active, or oscillate between active and inactive states. The cellular property called plateau

1The author would like to thank John Taylor for pointing out the methods of symbolic dynamics.
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termination is interpreted as follows: A neuron (cn) that can terminate a plateau, but cannot activate

from a resting state without external in
uence, will contribute exactly one transition to the set E ,

CPT
n (� 0j�) 2 E , where ~c0

n = 0 if ~cn = 1.

Two other cellular properties, tonic activity and endogenous oscillation will be interpreted anal-

ogously as transitions. The �rst transition, CTA
n (� 0j�), works in the opposite direction as plateau

termination, if the neuron cn is inactive, then it becomes active. The second cellular property,

CEO
n (� 0j�), results in one of two transitions, depending upon the initial state of neuron cn. If ~cn = 1

then ~c0

n = 0, otherwise ~c0

n = 1

The information about synaptic connectivity of the network adds more transitions to the set E .

Suppose there is a synaptic connection between neurons cm and cn in the network N = f: : : ; cm; : : : ;

cn; : : :; S; Cg where cn is the postsynaptic neuron. A synaptic transition associated with an inhibitory

chemical synapse in S is denoted as SImn(�
0j�) where the activity of the presynaptic neuron can silence

the activity of the postsynaptic neuron so that ~c0

n = 0, if ~cn = 1 and ~cm = 1. The transition associated

with an excitatory chemical synapse, SEmn(�
0j�), is de�ned in an analogous manner except that the

postsynaptic neuron is excited from an inactive.

Electrical synaptic connections cause the neurons to equalize their membrane potential so they

either excite or inhibit, depending on the state of the presynaptic neuron. If the synapse is a gap

junction, then either neuron can take the role of postsynaptic and presynaptic neuron. Suppose that

~cn = 1 and ~cm = 0. Then two transitions are associated with this connection: one with �nal state

~cn = 1 and ~cm = 1, and the other with �nal state ~cn = 0 and ~cm = 0.

Important subgraphs of G(V; E) for the study of rhythmic behavior result from the elimination

of edges that do not satisfy certain constraints. For instance, if the network is in a state where one

of the neurons is heavily inhibited by synaptic currents, then it is biologically implausible that the

neuron would undergo a transition from a silent state to �ring a burst of action potentials. One may

introduce thresholds for the neurons of the network and eliminate those transitions that violate a rule

based on the sum of ionic currents in each neuron (McCulloch and Pitts, 1942).

Let in 2 Z be a postsynaptic current due to activity of neuron n where in > 0 for an excitatory

and in < 0 for an inhibitory postsynaptic current. Assign a value C to each type of transition such

that C > 0 if the transition represents a neuron changing from an inactive to an active state and

C < 0 otherwise. A transitions is eliminated by the synaptic constraint if

C +
X

n

in � �; for C < 0

C +
X

n

in � ��; for C > 0 (2.1)
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where � is a threshold and the sum is over all active presynaptic neurons.

3 Rhythms and Rhythm Space

We will concentrate on the functional output of a given anatomical network of distinguishable neurons

because dynamic biological networks tend to recon�gure themselves to alter their output. The em-

phasis on functional output is achieved by de�ning a rhythm as a cycle through the transition graph,

G(V; E), where each neuron participating in the functional network changes state exactly twice, and

the states of all other neurons in the anatomical network are held �xed. This de�nition contains

the simpli�cation that makes our analysis possible, and there are several plausible reasons for why

allowing only two state changes for each neuron is not too restrictive. Double bursts within a cycle

of central pattern generators appear to be quite uncommon. In observed cases from the literature

(see e.g. (Miller, 1987)) it can be argued that an observed double burst is actually a long plateau

that has its spikes suppressed by inhibitory input during the middle of the plateau. A good reason

for allowing only one burst for each neuron per cycle is that plateau mechanisms are slow (Rinzel,

1987) so that small neural networks complete a full cycle before any neuron has recovered from its

last burst. Larger networks may have a tendency to breakup into smaller functional sub-networks,

but this issue requires more detailed investigation.

In order to count the maximum possible number of rhythms generated by a network of a given

size N , let us consider the extreme case where each state shares an edge with exactly N other states.

This would be the transition graph of a network composed of N endogenous oscillators. Each rhythm

of the network is a 2N -cycle of transitions. To count these rhythms, the number of orderings of

these transitions is equal to the number of permutations of 2N elements (2N !). Dividing out the

redundancy by rotations through the each cycle yields (2N � 1)! rhythms.

A classi�cation of cyclic dynamics on transition graphs corresponding to networks has been carried

out previously (Glass, l977). Every cyclic path is associated with to a coordinate sequence (Gilbert,

1958) that is the sequence of neurons that change state at each time step. According to this scheme,

any two cycles that have the same coordinate sequence are equivalent by a symmetry of the transition

graph. In dynamic biological networks, the assignment of cellular properties to individual neurons

breaks this symmetry so that another method must be devised for classi�cation.

3.1 Distances Between Rhythms. The functional similarity relevant to many neural systems

is the sequence of bursts generated by the composite neurons. Comparisons between rhythms will be

accomplished by introducing a distance function onto the set of rhythms to quantify the functional
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di�erences between them. Two rhythms are de�ned to be neighbors if their coordinate sequences

di�er by the transposition of adjacent elements. For instance, if a rhythm contains the following

sequence of neural states,

� � � [: : : ~cm : : : ~cn : : :][: : : ~c
0

m : : : ~cn : : :][: : : ~c
0

m : : : ~c0

n : : :] � � � (3.1)

then its coordinate sequence contains the elements (: : :mn : : :). A neighboring rhythm shares all the

states in the cycle but one,

� � � [: : : ~cm : : : ~cn : : :][: : : ~cm : : : ~c
0

n : : :][: : : ~c
0

m : : : ~c0

n : : :] � � � (3.2)

and has a coordinate sequence with two adjacent elements transposed, (: : : nm : : :). Since these two

rhythms di�er by only one neural state, it is natural to consider them as neighbors in the set of

rhythms. Our de�nition of distance is as follows: The distance between rhythm r1 and r2 is the

minimum number of adjacent transpositions of coordinate sequence elements that transforms r1 into

r2. This operation is symmetric with respect to the rhythms and satis�es the triangle inequality so

it quali�es as a distance. Thus, we may de�ne a rhythm space, R, as a set of rhythms R along with

metric, d : R � R ! Z+ [ f0g as de�ned above. Note that this de�nition of distance di�ers from

the Hamming distance (Hamming, 1986) which measures the overlap between two strings of binary

numbers; the distance function introduced here involves the adjacent transitions to the neural states

that do not overlap.

Two neighboring rhythms have a strong functional similarity because most of the activation se-

quence is preserved under translation by one step in rhythm space. This observation is particularly

important when considering networks that consist of motor neurons or a network that drives motor

neurons. The sequence of neuronal activation will translate into a sequence of muscle contractions.

Two rhythms that lie far apart in rhythm space will correspond to very di�erent movement patterns,

and neighboring rhythms will generate similar movements.

4 Rhythmic examples

Examples of rhythm generating networks are presented in this section to illustrate the concepts of

rhythm space. The following two examples are simple oscillator networks that generate all possible

rhythms when no constraints are applied to the transition graphs. These examples demonstrate the

complex geometric structure of rhythm space. The last example is from a well known biological system

(Getting, 1989) that has given rise to modern conceptual approaches to central pattern generators.
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The network is of interest here because it contains multicomponent synapses, and our analysis reveals

the speci�c components that are necessary for the generation of viable rhythms.

4.1 Oscillator Networks. The simplest rhythm generating network to be investigated here is

an abstract 2-neuron network where the maximum number of rhythms is (2N � 1)! = 6. An example

of such a network would be two endogenous oscillators connected by excitatory chemical synapses,

N = fc1; c2; fSE1;2;S
E
2;1g; fC

EO
1 ;CEO

2 gg as shown at the top of Fig. 1A. The transition graph is shown

in middle of Fig. 1A. The six rhythms are are represented by the following sequences of states, followed

by their associated coordinate sequences.

r1 : [10][00][01][00]; (1221) r2 : [11][10][00][01]; (2121)

r3 : [11][01][00][01]; (1221) r4 : [10][11][01][00]; (2121)

r5 : [11][10][11][01]; (2211) r6 : [10][11][10][00]; (2211):

(4.1)

Although rhythms are cyclical, we have adopted the convention of writing the rhythm beginning

with the transition in which the �rst neuron change state from 0 to 1. The structure of r1 tells us

that it has two neighbors because there are only two transpositions of adjacent coordinate sequence

elements that transform the rhythm. The transposition of the �rst coordinate sequence element with

the second transforms r1 into r4. Thus, the distance from r1 to r4 is d(r1; r4) = 1. These two rhythms

are superimposed on the transition graph of . The transposition of the last two coordinate sequence

elements yields r2. Continuing in this manner one is able to map out the rhythm space as shown at

the bottom of Fig. 1A. It is interesting to note that r2 and r4 are oriented in that they make a loop

through the states in opposite directions, while the other four rhythms are non-oriented since they

double back onto themselves. Thus, the distance from r2 to r4 must be greater than one since the

transformation must pass through a non-oriented rhythm in order to switch the orientation.

A similar network that generates only one rhythm is shown in Fig. 1B for comparison. Here

the cellular properties have been changes from endogenous oscillation to plateau termination so that

there is no mechanism that can excite either neuron if the neural state is [0 0]. Thus, the rhythm

space consists of a single rhythm. These two example show how changes in the cellular properties

can change the potential behavior of anatomically equivalent networks.

The distances between rhythms generated by a 2-neuron network are never great enough to il-

lustrate the di�erences between rhythms that are separated by a large distance in rhythm space.

Connecting a third oscillating neuron with gap junctions to our example network demonstrates the

complexity of rhythm space. Cycles on the transition graph of a 3-neuron network may be depicted

by cyclical paths on cubes (Glass, l975a; Glass, l975b) as shown in Fig. 2A. The �gure shows an
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arbitrary cluster of rhythms in the space of rhythms generated by three oscillating neurons. Each

line between cubes represents a distance of one so that the rhythms form a contiguous set in rhythm

space. The �gure is organized so that the rhythms on each row are members of dynamical equivalence

classes determined by symmetries of the cube (Glass, l975a). In the classi�cation scheme presented

here, rhythms are considered similar if they are near neighbors in rhythm space as shown in the

�gure.

The full rhythm space for three oscillating neurons contains 120 rhythms and exhibits a compli-

cated topology with several loops and interconnections between dynamical equivalence classes. Since

the paths on the transition graph are de�ned to be cycles of length 2N , the rhythms may also be

represented by hexagons (or 2N -gons for N -neuron networks). Each hexagon in Fig. 2B represents

a symmetry class of rhythms where the inscribed solid lines connect coordinate sequence elements

involving the same neuron. Beside each hexagon is a representative example of the class from Fig. 2A,

and the letters surrounding the hexagons correspond to coordinate sequence elements of each example

rhythm. The symmetry classes extend laterally to form loops in rhythm space through neighboring

members of adjacent symmetry classes. The number of members in each symmetry class is given be-

side the corresponding hexagon and is computed by counting the symmetries of the inscribed �gure

in each hexagon, modulo rotations.

4.2 Multicomponent Synapses in a Biological Network. The escape re
ex of the marine

mollusk Tritonia diomedea is a swimming response generated by a rhythmic neural network (see

(Getting, 1989) for review). Swimming consists of alternating dorsal and ventral 
exions correlated

with bursts of activity in two motor neuron pools. The alternating bursts of motor neurons are

driven by a premotor central pattern generator (Dorsett et al., l976) that consists of three neuronal

types interconnected with both inhibitory and excitatory chemical synapse. An interesting aspect

of the pattern generator is that it contains multicomponent synapses (Getting, 1983); synapses that

generate both excitatory and inhibitory postsynaptic potentials on di�erent time courses (Fig. 3A).

There are three populations of premotor interneurons: the dorsal swim interneurons (DSI) that

drive the dorsal motor pool, the ventral swim interneurons (VSI) that drive the ventral motor pool,

and C2 interneurons that aid in generating a functionally appropriate rhythmic pattern. For a viable

swim response, the DSI and VSI must �re out of phase with each other during some portion of

the swim cycle. Otherwise the dorsal and ventral muscles will simply co-contract, immobilizing the

mollusk.

An external source drives the DSI neuron to tonic excitability, thus initiating the swimming

response. There are no identi�ed pacemaker neurons, thus the pattern is generated completely by
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the synaptic interactions. The properties of this network can be investigated using the methods

of this article by carrying out the analysis on the circuit diagram in Fig. 3A. The network will be

represented by NTritonia = fDSI; V SI; C2;S; fCTA
DSI ;C

PT
V SI;C

PT
C2gg. There are two approaches that

one may take when dealing with the multicomponent synapses. First, both excitatory and inhibitory

synapse may be included to represent the multicomponent synapse,

S = f SIDSI, VSI;S
I
C2, DSI;S

I
C2, VSI;S

I
VSI, DSI;

SEDSI, VSI;S
E
C2, DSI;S

E
C2, VSI;S

E
DSI, C2g (4.2)

where in SIM, N, M is the presynaptic neuron and N is the postsynaptic neuron. Alternately, several

analyses may be run with di�erent combinations of a single synapse representing each multicomponent

synapse to determine which components are necessary for the pattern generation:

S(a1; a2; a3) = f Sa1DSI, VSI;S
a2
C2, DSI;S

a3
C2, VSI;

SIVSI, DSI;S
E
DSI, C2g (4.3)

where ai = I or E.

The �rst approach generates a large contiguous cluster of 44 rhythms which can be compared to

the experimental results (Getting, 1983). Only one or two of the rhythms represent the sequence of

neural state transitions that are observed in the biological network, and in 9 rhythms VSI �res only

in phase with DSI leading to the inappropriate motor behavior described above. One may try to

reduce the number of rhythms by applying the synaptic constraint (eq. 2.1), but if the threshold is

set at � = 0, then no rhythms survive the constraint, and with � = 1, all 44 of the rhythms survive.

The reason for this \all or nothing" result from the constraint is that our method does not take into

account the time courses of the multicomponent synapses. The constraint counts the currents of

all synaptic conductances simultaneously, thus eliminating more than is realistic when the threshold

is set low. Otherwise, all of the synaptic currents can act without regard to temporal ordering to

generate many spurious rhythms that do not follow from the synaptic time courses of the biological

network.

In order to tease out the important components of the synaptic dynamics, we take the second

approach of using a single synaptic connection to represent each multicomponent synapse. A sys-

tematic study of the network with synaptic connections S(a1; a2; a3) reveals that only a limited set

of components are necessary for rhythm generation. With no synaptic constraints applied, S(I; E; I)

and S(I; I; I) generate no rhythms. Under the synaptic constraint with � = 0, three of the synapse

sets generate rhythms. These are S(E; I; E), S(E; I; I), and S(I; I; E) which generate the rhythms
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shown in Fig. 3B. The rhythms generated by S(E; I; E) are numbered 1, 2, and 3, the network de�ned

by S(E; I; I) generates 1, 4, and 5, and S(I; I; E) generates number 3. The rhythm most consistent

with neurophysiological recordings (Getting, 1983) is number 2, while rhythm 3 may be consistent

with the last cycle of the escape response.

Taken together these rhythms form a single cluster in rhythm space showing that all three con-

nectivity sets generate functionally similar rhythms. Yet upon closer inspection it becomes clear

that rhythm 5 is does not allow DSI and VSI to �re out of phase with each other. Note that this

rhythm lies furthest from the rhythms consistent with physiological recordings. This example shows

the functional meaning of the measure used in rhythm space. The rhythms that are within a distance

of 1 or 2 to the rhythm that represents normal activity of the swim cycle are still able to generate

a viable escape response. Further away the system generates rhythms that are functionally distant

in the sense that the viable response is not adequately performed. This analysis tells us that certain

phases of the synaptic responses are more important that others for generating viable rhythms.

5 Discussion

The main objective of this work is to fashion tools that are useful in the study of biological neural

networks that exhibit complicated behavior. Rather than utilizing a continuous approach of dynamical

systems, discrete methods have been chosen so that a classi�cation theorem for rhythmic networks

begins to emerge. This will help to �ll the gap between simulation studies of biological networks and

a global understanding of the systems. The lack of classi�cation theorems for nonlinear dynamical

systems in higher dimensions leaves one to probe the parameter space of a conduction-based simulation

to gain an overall mapping of the expected behavior. The intent here is not to develop another

method to analyze coupled oscillators, but to develop a way of understanding the behavior of complex

automata with a rule base that can be tailored to biological problems. The result uncovers some

interesting mathematical questions as well as opens the door to some potentially useful biological

applications. A software implementation of the concepts presented here is available by anonymous

ftp at reed.edu/reed/users/proberts.

An important mathematical question relates to the structure of rhythm space. We have been

unable to derived a simple formula to measure the distance between two rhythms as described above.

The calculations have been done in an iterative fashion by �nding the nearest neighbors of the rhythms

of interest and continuing until a region of rhythm space large enough to contain all of the rhythms

is mapped out. Since the number of elements in rhythm space increases as (2N � 1)!, this method
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becomes impractical for any but the smallest networks. Another open question is what the greatest

distance between two rhythms is in terms of the number of neurons. Rhythm space appears to have

a rich and regular structure, and more research is needed to resolve these issues.

Once a network has been analyzed to classify the rhythms so that their positions in rhythm space

have been determined, it might be useful to rate the rhythms in terms of probabilities from the most

likely to the least. At every state from which there is more than one transition possible, a probability

may be assigned to each transition dependent on cellular and synaptic factors. Such an assignment

has already been introduced in the constraints where we eliminated transitions by e�ectively deeming

them \impossible." This approach could be made more precise leading to the product of the transition

probabilities in a rhythm to compute the relative probability of each rhythm. Such a ranking would

be useful for predicting observations in real biological networks, estimating changes that need to be

made to alter the output sequence, and what rhythmic changes can be expected as certain transition

probabilities are varied.

The introduction of probabilities can also help to compare rhythms that involve di�erent numbers

of neurons. In its present form, rhythm space is useful only for comparing rhythms involving the

same number of neurons. This is due to the restriction that in a rhythm each neuron changes state

exactly twice. One could allow a rhythm to be expanded with sub-rhythms involving subsets of

the neurons considered in the main rhythm. Such an expansion would convert an N -rhythm into

an N + N 0 rhythm where N 0 � N is the number of neurons in the sub-rhythm. Due to the large

number of possible expansions, the introduction of probabilities would help to choose only the most

prominent rhythms for comparison. We expect that after considerations of each neurons burst length

and recovery period, there is a certain optimum rhythmic period that would suppress most of the

generated rhythms.

As parameters such as transition probabilities are introduced into the formalism, one moves away

from formal classi�cation and into biological modeling. To be sure, a rhythm as de�ned above is

not what one observes in recordings of neuronal activity in dynamic biological networks. In order

to convert rhythms into a form that can be compared with data, the time courses of the transition

mechanisms must be considered. Each time step of a rhythm lasts as long as the time course of

the next transition. Varying degrees of precision can be introduced until the converted rhythm

best matches observations within experimental error. An application to the stomatogastric ganglion

(Johnson and Hooper, 1992) using this approach has led to experimental predictions (Roberts, 1997)

revealing the existence of mechanisms that would not be obvious from the study of a single rhythm.

Thus, the formalism presented here not only treads upon some rich mathematical territory, but can
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aid our understanding of the mechanisms involved in dynamic biological networks.
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Figure 1: Two neurons. (A) Top: A network of two neurons connected by excitatory chemical

synapses. Each neuron is an endogenous oscillator. Middle: The transition graph associated with

the network. The path through the transition graph of two rhythms generated by this network are

shown. If the transition that silences neuron 1 in r1 is transposed with an adjacent transition that

excites neuron 2, then rhythm r1 is changed into rhythm r2. Bottom: Rhythm space of the network.

(B) Top: The same anatomical network as (A), but here the neurons exhibit plateau termination.

Middle: The transition graph for this network including the only cyclic path that represents rhythm

r5. Bottom: The rhythm space contains only one point.

Figure 2: The structure of rhythm space. (A) Each cube displays a cycle that represents a rhythm of

the 3-oscillator network described in the text. Solid lines between cubes represent a distance of one

in rhythm space. (B) A hexagonal representation of rhythms and the associated path on the cube.

Numbers quantify the members in each dynamical equivalence class.

Figure 3: Rhythms of the swim response network. (A) The pattern generating network studied in

the text. Filled circles are inhibitory synapses and T-bars are excitatory synapses. Mixed synapses

indicate multiple components. (B) Five rhythms generated by 3 di�erent choices of synaptic compo-

nents. Connecting lines represent a distance of one in rhythm space. (C) The same rhythms as (B)

represented by cycles on cubes.

17



Fig. 1

A B

PT

[ 0  1 ] [ 1  1 ]

[ 0  0 ] [ 1  0 ]

SE
1,2

SE
2,1

PT

PT

PT

21
PT PT

21
EOEO

[ 0  1 ] [ 1  1 ]

[ 0  0 ] [ 1  0 ]

SE
1,2

SE
2,1EO

EO

EO
EO

EO
EO

EOEO

r5r3 r6

r4

r1 r5

r2

r5r2

r1



a
b

c

Fig. 2

A B

48

2416

24

8

c c

a b

a b

c c

b b

a a

c c

b a

a b

a c

b a

c b

a b

b a

c c



DSI
VSI
C2

DSI
VSI
C2

state

state

1 2 3

4 5

A B

Fig. 3

C

VSI

DSI

C2

DSI
VSI

C2


