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Abstract Dynamics of spike-timing dependent synaptic
plasticity are analyzed for excitatory and inhibitory synapses
onto cerebellar Purkinje cells. The purpose of this study is
to place theoretical constraints on candidate synaptic learn-
ing rules that determine the changes in synaptic efficacy
due to pairing complex spikes with presynaptic spikes in
parallel fibers and inhibitory interneurons. Constraints are
derived for the timing between complex spikes and presy-
naptic spikes, constraints that result from the stability of the
learning dynamics of the learning rule. Potential instabili-
ties in the parallel fiber synaptic learning rule are found to
be stabilized by synaptic plasticity at inhibitory synapses if
the inhibitory learning rules are stable, and conditions for
stability of inhibitory plasticity are given. Combining exci-
tatory with inhibitory plasticity provides a mechanism for
minimizing the overall synaptic input. Stable learning rules
are shown to be able to sculpt simple-spike patterns by reg-
ulating the excitability of neurons in the inferior olive that
give rise to climbing fibers.

Keywords Cerebellum . Learning . STDP . Modeling .
Vestibular

Understanding how the central nervous system processes
temporal information is a prominent challenge facing neu-
roscience today. Our understanding is particularly poor con-
cerning the connection between synaptic plasticity at the
cellular level and the dynamics of actual activity patterns as
examined in systems-level studies. The cerebellum offers a
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unique opportunity to investigate this connection using com-
putational studies because of the anatomical regularity of the
cerebellar cortex (Llinás, 1975), and because of compelling
evidence for synaptic plasticity at several sites within the
cerebellum (Hansel et al., 2001).

The present study addresses the properties of associative
depression at parallel fiber synapses onto Purkinje cell den-
drites (Ito et al., 1982). Associative depression, referred to
as long-term depression (LTD) (Ito, 1989), arises from con-
junctive stimulation of parallel fibers and climbing fibers.
Each climbing fiber spike produces a strong depolarization
of the Purkinje cell dendrites that opens voltage gated Ca2+

channels (Llinás and Sugimori, 1980). This inflow of Ca2+

has been shown to be essential for the induction of this form
of LTD (Ekerot and Kano, 1985; Sakurai, 1989). There is
also evidence of non-associative enhancement on the paral-
lel fiber synaptic efficacy when stimulating the parallel fiber
alone (Sakurai, 1989). Experiments in vivo suggest that this
enhancement can reverse the associative depression (Ekerot
and Jorntell, 2003).

Theoretical studies (Albus, 1971; Marr, 1969) have sug-
gested that synaptic plasticity could lead to learning at a
systems level, but these studies are complicated by the ef-
fects of complexities in the circuitry, such as the feedback
loop from Purkinje cell output to climbing fiber input. It is
therefore difficult to determine what effect, if any, the plas-
ticity that has been observed empirically has on the dynamic
processes that take place in the cerebellar cortex. The feed-
back loop can have an important effect on the stability of
learning dynamics, as we show in the present study.

Another important reason for difficulty is that empirical
studies of synaptic plasticity in the molecular layer of the
cerebellar cortex have been carried out in many different
preparations, resulting in conclusions that appear contra-
dictory (Mauk, 1997). There is wide disagreement in the
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literature as to the exact timing relation between the parallel
fiber input and climbing fiber response that is required for
cerebellar long-term depression (LTD) (Mauk, 1997). Part
of this disagreement may be due to the use of very different
preparations. Examples include the intact cerebellum (Ito
et al., 1982), in vitro slice preparations (Crepel and Jaillard,
1991; Hirano, 1991; Ito, 1990; Schreurs and Alkon, 1993;
Schreurs et al., 1996), and cultured neurons (Lev-Ram et al.,
1995; Linden et al., 1991). The possible range for the timing
required to induce LTD has been reported to extend from
the complex-spike preceding the parallel fiber stimulation
by 1.75 sec (Karachot et al., 1994) to the complex-spike
following the parallel fiber stimulation by 250 msec (Chen
and Thompson, 1995).

In spite of this disparity in the timing relations, there
seems to be agreement that the induction of LTD requires an
elevated concentration of Ca2+ in Purkinje cell dendrites in
conjunction with binding of glutamate at the parallel fiber
synapse (Linden and Connor, 1993) (or release of nitric ox-
ide by a spike in the parallel fibers (Lev-Ram et al., 1995)).
The presence of voltage-gated Ca2+ channels in Purkinje
cell dendrites implies that synaptic plasticity can be very
sensitive to the presence of inhibitory input, and the tim-
ing relations could be shaped accordingly (Callaway et al.,
1995). It has been suggested that Ca2+ release from inter-
cellular stores may be the main factor for synaptic change,
a mechanism that results in drastically different timing re-
lations (Fiala et al., 1996; Houk and Alford, 1996; Miyata
et al., 2000). In addition, inhibitory postsynaptic currents
in Purkinje cells also show signs of plasticity (Kano et al.,
1992) that enhances inhibition when inhibitory inputs are
paired with postsynaptic depolarization. The inhibitory cur-
rents also show a non-associative reduction when the neuron
is hyperpolarized or in the presence of Ca2+ chelators (Kano
et al., 1992).

Recent empirical study of parallel fiber synaptic plasticity
have revealed that a form of non-associative long-term po-
tentiation (LTP) reverses the LTD caused by pairing parallel-
fiber spikes with complex spikes (Lev-Ram et al., 2002;
Coesmans et al., 2004). Such reversibility of LTD is essential
for the system to avoid saturation of the synaptic strengths by
noise. If there were no form of LTP that reversed the effects of
complex-spike induced associative LTD, then random climb-
ing fiber activity would depress the system permanently.

Theoretical studies of spike-timing dependent plasticity
(STDP) can help to predict the physiological STDP learn-
ing rule in Purkinje cells because each STDP learning rule
has dynamic consequences that could explain how cerebellar
LTD leads to observed systems-level adaptation. A class of
STDP learning rules that has well-understood learning dy-
namics is characterized by an associative depression compo-
nent and a non-associative potentiation component (Roberts
and Bell, 2000; Williams et al., 2003; Rumsey and Abbott,

2004). For this class of STDP learning rules, if the time delay
between the EPSP and the LTD interval is too great, insta-
bilities will develop (Roberts, 2000a; Williams et al., 2003)
that would be evident in in vivo simple-spike recordings.
Instabilities would manifests as temporal oscillations in the
simple-spike rate, oscillations of a frequency determined by
the mismatch between the learning rule and the efficacy of
the presynaptic for causing a postsynaptic spike.

While some neuronal systems are well enough understood
to justify the construction of detailed compartmental models
in which various conductances and their spatial distribu-
tion are modeled, the high dimensionality of the parameter
space in these models, and their complex dynamics, means
that a great amount of preliminary experimental data must
be collected before the model can be considered biologically
realistic (Traub et al., 1991). This is particularly true of cases
when a circuit with different types of neurons must be mod-
eled. Although much is known about conductances in cere-
bellar Purkinje cells, detailed modeling presents formidable
computational challenges (DeSchutter and Bower, 1994) that
limits testing neuronal behavior on the network level. These
difficulties can be partially avoided by subsuming the com-
plexities of the simple spike generation mechanism into a
single value that represents the spike threshold of the mem-
brane potential (Abbott and Kepler, 1990). A large class of
neuronal models that incorporate such a spike threshold are
called integrate-and-fire models (Jack et al., 1975; Stein,
1967).

A variation of the integrate-and-fire, the spike response
model (Gerstner and van Hemmen, 1992), approach uses
more realistic representations of postsynaptic potentials
(Gerstner, 1998). Typically, the time-course of dendritic
integration is assumed ad hoc to yield exponential decay
with an experimentally derived time constant. On the other
hand, if the membrane potential is recorded at the soma,
and the spikes are generated near the soma, then a more
realistic representation of postsynaptic potentials would be
precisely those postsynaptic potentials recorded when presy-
naptic fibers are stimulated. We represented the neurons of
the cerebellum and associated nuclei as spike-response mod-
els to evaluate the learning dynamics induced by complex
spike-timing dependent plasticity (CSTDP).

In the study reported here, we utilize a mathematical ap-
proach that simplifies the task of investigating the effects of
different synaptic learning rules. This approach is designed
to characterize the network dynamics that result when the
exact timing of the pre- and postsynaptic events determine
the amount of synaptic change (Roberts and Bell, 2000;
Roberts, 2000a; Williams et al., 2003). Our goal is to derive
the optimal CSTDP learning rule at Purkinje and stellate cell
synapses for stable, systems-level learning. In addition, we
show that when plasticity is present at both excitatory and in-
hibitory synapses, then the synaptic efficacies are minimized
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so that the minimum number of synapses are non-zero as
recently described (Isope and Barbour, 2002; Brunel et al.,
2004).

Mathematical methods

The basic framework of the model was to repeatedly asso-
ciate (or pair) a climbing fiber spike pattern with a series
of adaptable synaptic inputs that represent parallel fiber and
inhibitory interneurons. We assumed that the onset of the
adaptive synapses was correlated in time with the beginning
of the climbing fiber pattern. Specifically, the onset of each
adaptable postsynaptic potential (PSP) had a different de-
lay from the beginning of each presentation of the climbing
fiber pattern so that the total adaptable input formed a series
of overlapping PSPs (Fig. 1(A)). During each parallel-fiber
or stellate-cell spike, the synaptic strength (weight) was in-
crementally changed by a non-associative learning rate. In
addition, if a complex spike occurred during an associa-
tive window determined by an STDP learning rule, then the
synapse was depressed. The model predicted the changes in
the simple spike probability of a Purkinje cell during associ-
ation with complex spike patterns.

Each repetition of paired inputs was parametrized with
the variable t representing the evolution of the system dur-
ing repeated pairings. The time following the beginning of
each pairing step denoted by xn = n(!x) with !x denoted
a time step during the pairing and n an integer. Thus, the
representation of time in the model has been broken into two
components, (xn, t), where xn denotes the time following

a paired stimulus or motor command, and t represents the
number of cycles. If T is the period of the stimulus cycle,
then (xn + T, t) = (xn, t + 1). These coordinates allow us to
separate slow processes from fast processes where t is the
slow-process parameter that tracts the influence of synaptic
plasticity, and xn is the fast-process parameter that tracks
the neural activity within each stimulus cycle. The model’s
prediction of the peristimulus histogram has xn as the inde-
pendent variable, and the histogram changes as a function
of t. The anatomical connectivity represented in Fig. 1(A)
identifies the chief elements of the model.

The model neurons were represented as a single com-
partment spike response model (Gerstner and van Hemmen,
1992). This mathematical approach has been used previ-
ously in other systems (Abbott and Blum, 1996; Gerstner
et al., 1993; Roberts and Bell, 2000) to evaluate the effects
of STDP learning rules. The formalism of spike-response
models allows us to complement our simulation studies with
analytical results that will provide a deeper theoretical un-
derstanding of our predictions. Each model neuron was as-
signed a time dependent membrane potential, V (xn, t). This
function represented the result of voltage recordings if they
were made at the spike-generation zone, and a spike occured
whenever the membrane potential of a neuron exceeded a
threshold, θ .

The membrane potential was assumed to be influenced
by many random processes beyond the control of the investi-
gator. Therefore, we represented the membrane potential as
a random variable with a normal (bell-shaped) distribution
function. The mean value of the membrane potential is rep-
resented by V (xn, t) with a variance (Levine, 1991) such that

Fig. 1 Stochastic model of the cerebellum. (A) The synaptic connec-
tivity of the cerebellum model. The Purkinje cell (PC) simple-spike
probability (Pss) is computed from the sum of adaptive inputs from
parallel fibers and stellate cells (st). These adaptive inputs are corre-
lated in time with different delays (x1, x2, . . . , xN ) from the beginning
of each stimulus presentation. The PC output inhibited a cerebellar tar-
get nucleus cell (CN), that inhibited a cell in the inferior olive (IO).
The spike probability (Pio) was used to generate the complex spike
pattern (Pcs ) that was paired with the spike times of the parallel fiber
and stellate cell inputs to apply the STDP learning rule on the synaptic

weights (w1
e , w

2
e , . . . , w

N
e and w1

i , w
2
i , . . . , w

N
i ). The model neurons

summed their synaptic inputs, plus noise, to generate a spike when-
ever the total membrane potential reached a threshold. (B) Top panel
shows the excitatory parallel-fiber (εe(xn)) and inhibitory stellate cell
(εi (xn)) postsynaptic current multiplied by the synaptic weights in our
model Purkinje cell. The bottom panel shows candidate STDP learning
rules for the parallel fiber (αe + βe Le(xn), with βe < 0) and stellate cell
(αi + βi Li (xn), with βi > 0) synapse denoting the weight change for a
given delay between the onset of the PSP and a complex spike
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the activity could be quantified by the spike-probability func-
tion, P(xn, t) = (1 + exp(−µ(V (xn, t) − θ )))−1. The value
of the spike-probability function is the probability that a spike
will occur during time-step (xn, t). The function P(xn, t) has
a sigmoid form in V and a value of 1/2 at V (xn, t) = θ . The
mean instantaneous spike frequency could be obtained by
dividing the probability function, P(xn, t), by the absolute
refractory period, !x . Thus, when the membrane potential is
high above the threshold, the neuron’s output saturates at its
maximum frequency, determined by the refractory period.

Adaptive synaptic inputs from parallel fibers and stellate
cells contributed to the model neuron’s membrane potential
linearly through a weighted sum of PSPs. The PSPs were
correlated in time with the beginning of each stimulus cycle
such that they arrived as a series of delayed synaptic inputs.
The use of delay-lines here is intended to approximate the
recurrent dynamics of the granule cells interating with Golgi
cells to generate correlated parallel fiber spike patterns with
respect to mossy fiber stimulations (Buonomano and Mauk,
1994). The delayed inputs generate a basis set that can be
used to generate a temporal pattern in Purkinje cells with an
appropriate adjustment of weighting factors (de Vries and
Principe, 1992).

The waveform of each PSP was represented by kernel
functions; εe(xn) for excitatory PSPs and εi (xn) for inhibitory
PSPs. The kernel functions were fit to Purkinje cell PSPs
and x = 0 represented the time that the presynaptic spike
first reached the synapse (see Fig. 1(B)). The kernels were
normalized such that

∑
n εe(xn) = 1. The PSP generated by

each synaptic input was obtained by multiplying each ker-
nel by a weighting factor, wn

e for excitatory PSPs and wn
i

for inhibitory PSPs where n denotes the time, xn , from the
beginning of each stimulus cycle when the synapse initi-
ated its PSP. At each time-step in the x-component, up to the
limit for temporally correlated adaptive inputs, we associated
synapses with an excitatory PSP equal to wn

e (t)εe(xm − xn)
and an inhibitory PSP equal to wn

i (t)εi (xm − xn). The con-
tribution to the average membrane potential, VA(xm, t), by
the adaptive synaptic inputs in the molecular layer was then
computed to be the sum of all PSPs,

VA(xm, t) =
∑

n

wn
e (t)εe(xm − xn) +

∑

n

wn
i (t)εi (xm − xn).

(1)

where the range of the sum over n represented the limits of
temporally correlated input.

The model synapses represent populations of parallel
fibers or stellate cells that fire at approximately the same
time relative to the associated stimulus. Thus, the synap-
tic weights, wn

e (t) and wn
i (t), combine the presynaptic re-

lease probability, the postsynaptic quantal size, and the

number of active zones, where the timing of presynap-
tic spikes are simultaneous within the precision of the
model.

The time-dependent activity of Purkinje cells was mod-
eled in accordance with the connectivity represented in
Fig. 1. Throughout the stimulus cycle, a delayed sequence
of EPSPs was modeled as arriving at the Purkinje cell den-
drites. The sequence was temporally correlated to the phase
of the stimulation, while uncorrelated units were represented
as noise.

The output of a Purkinje cell was represented by two
spike probability functions. The first, Pss(xn, t), quantified
the probability of a simple spike, where xn denoted the phase
of the stimulation that began at time t = 0. The second spike
probability function, Pcs(xn, t), represented the analogous
function for the complex-spikes. However, this latter func-
tion differs from the corresponding simple-spike probability
function in that it does not directly depend on the Purk-
inje cell’s membrane potential. Instead, the complex-spike
probability functions depends on the membrane potential of
neurons in the inferior olive, such that Pcs(xn, t) = Pio(xn, t)
as shown in (Fig. 1(A)).

The simple spike probability function was represented by
the sigmoid function of the parallel fiber contribution to the
average membrane potential,

Pss(xn, t) = P(VA(xn, t)) = 1
1 + e−µss (VA(xn ,t)−θss )

, (2)

where θss is the simple spike threshold and µss parametrizes
the noise in the Purkinje cell.

For the cerebellar STDP learning rule, the dendritic spike
that determined synaptic plasticity was represented by the
complex-spike (Llinás and Sugimori, 1980). In addition,
the PSP time courses were taken from in vitro intracellular
recordings of Purkinje cells following stimulation of parallel
fibers (Neale et al., 2001) (Fig. 1(B)). The average change in
synaptic weight per cycle was given by the non-associative
weight change minus the average associative change, aver-
aged over the probability of complex spikes (Roberts, 2000a;
Williams et al., 2003),

!wn
e (t) = αe +

∑

m

βe Le(xm − xn)Pcs(xm, t). (3)

A similar STDP learning rule was used to compute the
changes in the inhibitory PSPs, with the inhibitory STDP
learning function substituted for the excitatory STDP learn-
ing function (Fig. 1(B)).

We have previously developed a method to analyze the
stability of a STDP learning rules (Roberts and Bell, 2000;
Williams et al., 2003). Whenever a set of adaptive synaptic
inputs are correlated in time, and there is a mismatch between
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the learning rule L(xn) and the efficacy of the PSP kernel
εe(xn) on dendritic spike generation, then oscillations de-
velop from instabilities in the learning dynamics (in Eq. (3),
L(xn) = βe Le(xn)). Instabilities result from the synaptic ef-
ficacy becoming depressed at a different time relative to the
contribution of synapses to the membrane potential. There
are no short-term stability issues in this model because the
complex spike is too low. To test for long-term, learning
instabilities in the learning rule, we compute the Fourier
transform of L(x) defined by

F[L](k) =
∫

dxeikx L(x). (4)

Then, in the continuous limit of t, we find that the condition
for stability is

Re
[
F[L](k)F[ε](k)

]
< 0, k ∈ (−∞,∞), (5)

where the overline is the complex conjugate. We represent
our postsynaptic potential functions as gamma functions, and
their convolutions so that the Fourier transforms that we will
need are

εm(x − x0) = (x − x0)m

m!τm+1
exp

[−(x − x0)
τ

]

⇒ F[ε](k) = e−ikx0

(1 − ikτ )m+1
(6)

where εm(x) ≡ 0 for all x < 0, and the function εm(x) is
normalized such that

∫ ∞
0 εm(x)dx = 1. We include x0 as a

temporal-shift parameter in our learning functions to study
how timing of the learning window affects stability of the
learning dynamics.

The efficacy of parallel fiber synapses on complex spikes
is polysynaptic. Thus, in our model, we approximated the
efficacy by expanding the spike probability function near a
mean spike rate (Roberts, 2004),

Pss(xn, t) = pss + µss pss(1 − pss)(Vss(xn, t) − Uss) + · · ·

(7)

where pss is the spontaneous Purkinje cell simple-spike prob-
ability during each time-step, and Uss is the background
membrane potenial that leads to that rate. The background
simple-spike rate is modulated by the parallel fiber and stel-
late cell spikes that are represented in the time-dependent
membrane potential (Eq. (1)), Vss(xn, t). The linear term in
Vss(xn, t) provides the first-order contribution of the parallel
fiber synaptic efficacy in generating a simple spike. A simi-
lar expansion for CN cells (Fig. 1(A)) leads to a convolution

of PSP functions for each synaptic link given by the CN
membrane potential:

Vcn(xn, t)=wpc→cnεcn ∗ Pss(xn, t)+wpc→cnεcn ∗ Pcf (xn, t)

≈wpc→cn[pss +µss pss(1− pss)εcn ∗ εp f (x p f , t)].

(8)

where wpc→cn weights the inhibitory PSP in CN neurons, εcn ,
caused by Purkinje cell spikes, and x p f is the time of a parallel
fiber spike. Since Pss(xn, t) * Pcf (xn, t), we have ignored
the second term in our approximation of Vcn(xn, t). In the
chain of connections from the parallel fibers to the IO-cells,
the efficacy of the parallel fiber spikes on IO neurons is then
approximated by wcn→iowpc→cnµcn pcn(1 − pcn)µss pss(1 −
pss)εio ∗ εcn ∗ εp f (x p f , t), where εio is the normalized in-
hibitory PSP function caused by a CN spike on an IO neuron
and wcn→io is the corresponding synaptic weight. Because
the neural spikes are caused by depolarization, the efficacy
of synaptic inputs is determined by the timing of the PSPs,
rather than simple the presynaptic spike times. Therefore, a
delay is embedded in the loop from SS to CS because of
the membrane properties of the individual neurons along the
pathway.

Our analytic results yielded the equilibrium synaptic
weight configuration for large-t, but not the dynamics far
from equilibrium. Thus, in order to augment our investiga-
tion of the learning dynamics of this model, we developed
simulation software based on the spike response model. The
studies presented here were based on computer simulation
studies using the cerebellar model shown in Fig. 1. We used
200 parallel fibers (N = 200) and 200 stellate cells, one Purk-
inje cell, and one representative from the neural pools in the
inferior olive and the cerebellar nucleus. The membrane po-
tential of each postsynaptic cell, Vpost (xm, t), was calculated
by a sum of the baseline potential, V0, and PSPs at each time-
step, such that Vpost (xm, t) = V0 +

∑
n, j w j (t)εP S P (xm −

xn)S pre
j (xn), where S pre

j (xn, t) = 1 if there were a presynap-
tic spike at time (xn, t), and vanishes otherwise. The j-sum
was over all presynaptic inputs, and the n-sum was across
the stimulus cycle. The PSP kernels, εP S P (xm), are shown in
Fig. 1(B).

Spikes were assigned by generating pseudorandom num-
bers drawn from a uniform distribution after calculating the
spike probability function, P(Vpost (xn, t)) (e.g. Eq. (2)). If
the random number was less than the spike probability, then
a spike was assigned. The parameters in the spike-response
models are given in Table 1. A time-step of 5 msec was
used in the x-component and periodic boundary conditions
were closed at the duration of the stimulus cycle. Each time
step in the t-coordinate was counted as a single stimulus
cycle. At the end of each stimulus cycle, the complex spike
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Table 1 Model parameters used in simulations. Cell types refer to
Purkinje cells (PC), cerebellar nucleus cells (CN), and inferior olivary
cells (IO). All values are normalized so that the synaptic weights are in
the range, [0.0, 1.0]. The spike threshold, θ , is given as a percentage of
the maximum membrane potential. The maximum membrane potential
is the maximum parallel fiber contribution (normalized to unity) plus
the maximum baseline potential, max(V0) = 1.0

Cell type µ θ V0 αe αi βe βi

PC 0.3 30% 0.28 0.0012 0.0012 0.18 0.18
CN 0.3 30% 0.40 0 0 0 0
IO 0.2 35% 0.28 0 0 0 0

times were used to adjust the parallel fiber and stellate cell
weights through the STDP learning rule (Fig. 2). Java code
that generated the figures is available at the authors web
site, http://www.ohsu.edu/nsi/faculty/robertpa/lab/java/.

Results

We have evaluated 3 sites of synaptic plasticity for their
effects on Purkinje-cell activity: (a) PF to Purkinje-cell
synapse, (b) Stellate cell to Purkinje-cell synapses, and (c)
the PF to Stellate-cell synapse. In our models, each site of
synaptic plasticity was subjected to STDP learning rules,
where the direction and magnitude of synaptic plasticity de-
pends on the time difference between pre- and postsynaptic
spikes. In these cases, the postsynaptic spike event was the
timing of the complex-spike and plasticity induced by pair-
ing presynaptic spikes with complex-spikes was assumed to
be reversed by isolated presynaptic spikes. We found condi-
tions for stability of systems-level adaptation at site (a). We
also found that synaptic plasticity at site (b) and (c) could
stabilize the possible instabilities of the learning dynamics
of Purkinje cells, if the learning rule at these synapses are
themselves stable.

Optimal stability of CSTDP learning rules

We investigated theoretical constraints on a class of mod-
els of cerebellar learning in which the simple-spike rate af-
fects the probability of complex spikes (Ruigrok and Voogd,
1995). The model circuitry assumed that the target nuclei of
the cerebellum were inhibited by Purkinje cells and sent pro-
jections across the midline to inhibit cells in the inferior olive
(Fig. 1). This double inhibition increased the complex spike
rate when the Purkinje-cell spike rate increased (Medina and
Mauk, 2000). Under these conditions, the exact timing of
associative LTD became critical for learning to be stable.
Unstable learning dynamics generate oscillations during the
stimulus phase (Fig. 3). If the learning dynamics are stable,
the learning dynamics cancel modulation of the membrane
potential during the stimulus cycle (Buonomano and Mauk,
1994). We tested biologically plausible STDP learning rules
(Crepel and Jaillard, 1991; Ito et al., 1982; Lev-Ram et al.,
1995; Linden et al., 1991; Schreurs et al., 1996) for stability
and found a stable class of STDP learning rules for cerebellar
learning, by applying analytic methods to test the stability
of STDP learning rules (Roberts and Bell, 2000; Williams
et al., 2003). Instabilities appear as oscillatory modes that
grow from the fixed point (see Fig. 3(B)). The stability of
these modes depends on the sign of real part of the product
of Fourier-transformed EPSP and the associative learning
function of STDP.

An example of a stable STDP learning rule for a well-
characterized system is the adaptive electrosensory process-
ing system of mormyrid electric fish (Bell et al., 1997c;
Roberts and Bell, 2000). The STDP learning rule in a
cerebellum-like structure, the electrosensory lateral line lobe
(Bell et al., 1997a), is based on the opening of postsynaptic
NMDA receptors allowing an influx of calcium ions that LTD
(Bell et al., 1997c; Han et al., 2000). A non-associative LTP
component to the learning rule reverses the LTD (Han et al.,
2000). The learning rule is stable because the postsynaptic

Fig. 2 Application of learning rule in the simulations. The STDP
learning rule changes the synaptic weights as a function of the exact
timing of the complex spike relative to the beginning of the PSP. (A) The
learning rule depresses the weight in proportion to Le(xcs ) = εe(xcs ),
where xcs is the time of a complex spike, then a complex spike that

occurs within the time course of the associative component causes a
decrease in the amplitude of the PSP. (B) The synaptic weight is en-
hanced by a fixed amount, αe, if the complex spike falls outside the
window of depression
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Fig. 3 Learning instabilities are caused by a mismatched timing of the
STDP learning rule. (A) Example of a stable learning rule where the
interval of depression has the same timing as the postsynaptic potentials
that lead to dendritic spikes, Le(xcs ) = εe(xs ), where xs is the time of a
dendritic spike that leads to depression. A series of excitatory PSPs add
together to generate the spikes with a probability shown by the solid line
in each graph. Assuming that the efficacy of the PSP input to generate
dendritic spikes is the same as the PSP itself, then the stable learning
rule will depress the synaptic strength proportionally to the PSPs con-
tribution to the spike probability. The top panel shows several PSPs that
are greater than equilibrium late in the cycle (90 < x < 150 ms). The

depression component of the STDP learning rule dominates in this
interval and, after many cycles, these PSPs are reduced to equilib-
rium (bottom). At equilibrium, the depression due to random dendritic
spikes are cancelled by non-associative potentiation, αe. (B) An un-
stable learning rule will depress synapses that have not contributed to
the above-equilibrium spike probability. A shift in the timing of the
depression window is shown here as an example. The PSPs early in the
cycle (x ≈ 40 ms) are depressed by the region of above-equilibrium
spike probability late in the cycle (x ≈ 100 ms). After many cycles the
variance grows as oscillations with a frequency determined by the shift
on the depression window

Fig. 4 Simulated response of model neurons in response to a single
parallel fiber spike. (A) We simulated the spike activity of a Purkinje
cell (A), the target cerebellar nucleus (B), and inferior olive neuron (C)
that generates the complex spike in the Purkinje cell during a stimula-
tion of the PFs. The spike probability of a target neuron in the inferior

olive fits a curve that is a convolution of the 3 postsynaptic potentials in
the pathway from the PF to the inferior-olive neuron. The shift is due
to synaptic delays in our simulation and nonlinearities introduced by
the spike probability function

event is a back-propagating dendritic spike that is generated
by parallel fiber EPSP within the same cell. Thus, there is
a match between the efficacy of the parallel fiber spikes to
generate a postsynaptic event. However, if the same STDP
learning rule is applied to the parallel fiber synapse onto
Purkinje cells in the cerebellum (Fig. 2), where the postsy-
naptic event is a complex spike, then the learning dynamics
are unstable, as shown in Fig. 5.

In the case of plasticity at the PF synapse onto Purkinje
cells, the critical function is the polysynaptic efficacy
with which the PF synapse contributes to a complex-spike
(Rumsey and Abbott, 2004). We found that the stable STDP
learning rule was the convolution of the following 3 func-
tions: the PF-evoked EPSP, the Purkinje-cell-evoked IPSP,
and the target nuclei-evoked IPSP in the inferior olive. The
shape of these functions is shown in Fig. 4. In the Methods,

we discussed an expansion of the spike-probability of neu-
rons in the cerebellar circuit that connects Purkinje cells to
the inferior olivary neurons that give rise to climbing fibers.
The approximate efficacy of parallel fibers on complex-
spikes was found to be proportional to εio ∗ εcn ∗ εp f (xn).
Thus, any stable learning rule is predicted to have an LTD
component to its learning rule that satisfies the stability con-
dition (Eq. (5)), yielding the condition on parallel fiber LTD,

Re
[
F[βp f L p f ](k)F[εio ∗ εcn ∗ εp f ](k)

]
< 0,

k ∈ (−∞,∞), (9)

We simplify the representations of the postsynaptic poten-
tials to be alpha-functions, ε1(x) (cf. Eq. (6)), and further
let their time constants to be equivalent, τp f = τcn = τio.
Thus, F[εio ∗ εcn ∗ εp f ](k) = (1 + ikτp f )−4, that forces a
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Fig. 5 Mismatch of STDP learning rule leads to unstable learning
dynamics. (A) The simple-spike probability of the model Purkinje cells
shows large oscillations (cycle 1000) for L1(x), and L2(x), but nearly
stable configuration for the learning rule that matched the efficacy of
the parallel fiber synapse on generating complex-spikes, L3(x). Except
for a small range near x0 = 40 ms, the variance of the Purkinje-cell
membrane potential is large due to oscillations caused by the learning
dynamics. The shift of 40 ms for the stable learning dynamics is re-
quired to compensate for the nonlinearities in responses of neurons to

the parallel fiber spikes through the chain of synaptic connections from
PC → CN →IO (see Fig. 4). (B) The evolution of the PC spike prob-
ability shows the growing oscillations caused by the instabilities with
L1(x). Weights are initiated at near, then increase by the non-associative
term in the STDP learning rule. After 100 cycles, complex-spikes be-
gin to appear and the increased variance reveals oscillation that grow
when the LTD component of the STDP learning rule does not match
the complex spike efficacy (Fig. 4(C))

constraint the limits of the time constant for the parallel
fiber learning rule satisfying, βp f Re(1 + k2τLτp f + ik(τL −
τp f ))4 < 0. A perfect match between the time-constants of
the learning rule and the postsynaptic potential, (τL = τp f ),
clearly satisfies the stability condition if βp f < 0.

We numerically simulated the cerebellar circuit
(Fig. 1(A)) using spike-response neuron models to test the
analytic prediction of the learning rule. Figure 5 shows the re-
sults of the simulation where the change in spike-probability
caused by parallel fiber spikes is shown in Fig. 4(A). There is
a deviation from our analytic prediction due to the nonlineari-
ties in our spike-probability function (Eq. (2)), forcing a shift
in the learning function, βp f L p f (x − x0), where x0 = 40 ms.
This shift could have been applied to the inhibitory synaptic
learning function with similar results. The simple-spike
probability for different learning functions is shown in
Fig. 5 showing the oscillations during the cycle caused by
instabilities in the learning dynamics. Large oscillations for
x0 += 40 ms result from a factor of exp(−ikx0) in the Fourier
transform of βp f L p f (x − x0), a factor that guarantees that
there exists a value for k where the stability condition
fails.

Effects of CSTDP at the stellate cell synapse
onto Purkinje cells

Empirical demonstrations of STDP at inhibitory synapses
have revealed two classes of learning rules: (1) symmetric
with respect to the presynaptic spike (Woodin et al., 2003)
or (2) asymmetric with respect to the presynaptic spike so
that the learning window is coincident with the IPSP in the

postsynaptic neuron (Han et al., 1999; Haas et al., 2004;
Bell et al., 1997b). However, neither of these STDP learning
rules helped stabilize the learning dynamics because they
themselves are unstable. Plasticity at inhibitory synapses was
explored in Roberts (2000b), and we have found that STDP
at the synapse from stellate-cell interneurons onto Purkinje-
like cells help stabilize learning instabilities if the STDP
learning rule at the PF synapse onto Purkinje-like cell causes
instabilities. However, extending the range of stability only
holds if the STDP learning rule at the inhibitory synapse is
itself stable.

The STDP learning rule that we tested in our analysis and
simulations was dependent on the interval between a stellate-
cell spike and a complex-spike in the Purkinje cell. We have
found that the condition of stability of CSTDP at excita-
tory synapses is also the formula for CSTDP at inhibitory
synapses. In a recent publication, we derived an inversion
principle (Williams et al., 2003) where replacing the postsy-
naptic potential kernel and the CSTDP learning function by
their additive inverse leaves the stability condition invariant.
Hence, the stable CSTDP learning rule for an inhibitory IPSP
is just minus the stable learning rule for the corresponding
excitatory EPSP.

Three possibilities exist for the PF and stellate cell CSTDP
learning rules yielding stable learning dynamics: (A) the
stellate-cell CSTDP learning rule is different from other ex-
amples of STDP learning rules at inhibitory synapses, (B)
the recent result (Jörntell and Ekerot, 2002) that climbing
fiber collaterals in the superficial molecular layer innervate
stellate cells, consequently leading to a depression of the PF
synapse onto stellate cells due to an association of complex
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spikes and stellate spikes, or (C) the stellate-cell learning
rule is unstable, but a stable parallel fiber CSTDP learning
rule stabilizes the learning dynamics.

If we assume possibility (A), that the stellate-cell STDP
rule is tailored to be stable in the cerebellum, then the
Purkinje-cell membrane potential can be stabilized by giving
the stellate input a stable learning rule, proportional to the
efficacy of stellate-cell spikes to generate complex spikes
(Williams et al., 2003). The stable learning function is de-
rived as the inverse of the stellate-cell inhibitory postsy-
naptic potential convolved with the postsynaptic potential
in neurons of the cerebellar nuclei and the inferior olive:
Lst (xn) = εio ∗ εcn ∗ εst (xn). The stability condition for par-
allel fibers alone (Eq. (9)) has a second term due to the stellate
contribution to the membrane potential (see Appendix and
Roberts, 2000c) so that the full stability condition becomes,

Re
[
F[βp f L p f ](k)F[εio ∗ εcn ∗ εp f ](k) + F[βst Lst ](k)

×F[εio ∗ εcn ∗ εst ](k)
]

< 0, k ∈ (−∞,∞). (10)

If the real part of either term is less than zero, then the
combined learning dynamics could still be stable because
of the sum of real parts. Our numerical studies found that
applying a stable STDP learning rule at the stellate synapse
would reduce the oscillations caused by shifts in the parallel
fiber learning rule (Fig. 6).

In our simulations, the variance of the membrane potential
was not improved with a shift, x0, near x0 = 40 ms, which
was the most stable region of the PF learning rule. These
simulations extended the analytic results by showing that,
although there are instabilities for most values of x0, the
oscillations are small for delays as large as x0 = ±50 ms.
This calculation suggests that measuring the CSTDP rule
for the parallel fiber synapse alone is not sufficient to deter-
mine whether the systems-level learning dynamics are stable.
One must also determine the stellate-cell CSTDP learning

rule to deduce how the combination of synaptic plasticity
at inhibitory synapses combines with plasticity at excitatory
synapses.

Possibility (B), that the site of synaptic plasticity for stel-
late inhibition is at the parallel fiber synapse onto stellate
cells was originally suggested by Albus (1971) using the ar-
gument that there are far more parallel fiber contacts onto
stellate cells than stellate cell contacts onto Purkinje cells.
Thus, synaptic plasticity at the parallel fiber synapse onto
stellate cells would maximize the storage capacity of the
network. Empirical evidence of synaptic plasticity at this
synapse has been reported (Jörntell and Ekerot, 2002), but
the amount of plasticity for delays between parallel-fiber
spikes and complex spikes, ie. the complete CSTDP learning
rule, was not determined. Our analytic model suggests that
a stable CSTDP learning rule would satisfy the condition:

Re
[
F[L p f →st ](k)F[εio ∗ εcn ∗ εst ∗ εp f →st ](k)

]
< 0,

k ∈ (−∞,∞), (11)

where here εp f →st (x) is the EPSP in stellate cells caused
by a parallel fiber spike. The added convolution induces
a longer delay between the parallel-fiber spike and the
climbing-fiber spike than in our previous example.

The third possibility (C) is that the learning dynamics
of the parallel fiber synapse onto a Purkinje cell stabilizes
the unstable learning dynamics of plasticity of the inhibitory
input to Purkinje cells. In this case we refer again to Eq. (10)
and conclude that if inhibitory plasticity is unstable, then this
places stricter constraints on the parallel-fiber synapse. All
three of these possible combinations of synaptic plasticity
could be tested by measuring the CSTDP learning rules. The
main theoretical point here is that a combination of CSTDP
at both inhibitory and excitatory inputs to Purkinje cells
yields a wider range of parameter values for stable learning
dynamics so that the system is more robust.

Fig. 6 Inhibitory CSTDP helps to stabilize the learning dynamics
of the PF to Purkinje-cell synapse. (A) The window of LTD for the
CSTDP learning rule at the parallel fiber synapse was shifted for delays
x0 = −60 → 60 msec. The variance of the membrane is a measure of
the instabilities caused by unstable CSTDP learning rules (thin, dotted

trace). When a stable CSTDP learning is applied at inhibitory synapses
(heavy, solid trace), the instabilities are suppressed. (B) Postsynaptic
potential functions and associated CSTDP learning rules for parallel
fiber (thin traces) and stellate cell (heavy traces) synapses
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Sculpting simple-spike activity with complex-spike
response modulation

The learning dynamics of stable STDP learning rules leads
to a constant output when parallel fiber inputs are correlated
in time. The fixed-point of the output rate is very robust
(Roberts and Bell, 2000; Williams et al., 2003) and tends
to cancel any modulation of the Purkinje cell rate that is
correlated with the parallel fiber spike pattern. However,
simple-spikes rates have been observed to be modulated by
sensory stimuli or motor activity. Thus, the question arises:
How can the Purkinje cell activity be trained for a desired
output pattern by the CSTDP learning rule?

Since complex spikes arise in a nucleus separate from
the cerebellar cortex, the possibility of external control of
the complex-spike patterns can be used to sculpt the simple-
spike pattern that is context specific to the stimuli that excite
granule cells. This phenomenon of independently control-
ling dendritic spikes and axonal spike, where the dendritic
spikes control synaptic plasticity, has been observed in a
cerebellum-like structure (Mohr et al., 2002). The cerebel-
lum appears to be well designed to implement the principle
that the activity of one set of inputs (climbing fibers) controls
the response of Purkinje cells to another set of inputs (mossy
fibers).

In our model circuit (Fig. 1), we modulated the activ-
ity of the model neuron representing an olivary cell with a
sinusoidal stimulus, s(xn), that was correlated with the cy-
cle of parallel-fiber delays, s(xn) = A sin(−2πxn/T ), where
T = 1 sec is the period of the cycle. The response of the sim-
ulated complex spikes is shown in Fig. 7(A) where there is
a peak in complex-spike histogram before adaptation takes
place. After 1500 cycles (Fig. 7(B)), the modulation of the
complex spikes has been cancelled by the simple spike mod-
ulation, where the dip in the simple-spike histogram corre-
sponds to a release of the cerebellar nuclei neurons from
inhibition, leading to an increase of inhibition of the inferior
olive neuron.

The phase relation between the simple-spikes and the
complex-spikes is consistent with data from the uvula-
nodulus (Barmack and Shojaku, 1995). Although the simula-
tion did not include details of climbing fiber spike generation,

it does suggest the following hypothesis: the antiphase rela-
tion involves associative depression of the synaptic efficacy
in the molecular layer. If the mossy fiber inputs that activate
granule cells are temporally correlated with respect to the
phase of the stimulus, then those parallel fiber synapse that
are coincident with climbing fiber activity will be selectively
depressed. The consequence is that during the part of the
stimulus when the probability of a climbing fiber response
is greatest, the Purkinje cell dendrites receive proportionally
less postsynaptic input from parallel fibers, thus reducing the
simple spike frequency.

A feature of the learning dynamics that can reduce the
overall synaptic input is that the synaptic weights of both
excitatory and inhibitory inputs drift in unison if the learn-
ing rates are not perfectly matched (Roberts, 2000c). Under
these circumstances, the sum of excitatory and inhibitory
postsynaptic potentials is constant, but there is an overall de-
pression (of potentiation) that drives the synaptic efficacies
to their minimum (or maximum) necessary to reach the fixed
point of the learning dynamics. The conditions that minimize
the overall synaptic input are that the ratio of the excita-
tory learning rates are less than the inhibitory learning rates,
αp f /βp f < αst/βst . The result shown in Fig. 7(B) is such a
case, and many of the synaptic weights, both excitatory and
inhibitory, vanish. These learning dynamics suggest a mech-
anism for the observation that most parallel fiber synapses
onto Purkinje cells are silent (Isope et al., 2002).

If the inequality of learning rates is great enough, then
the fixed-point of a constant complex-spike rate may be
distorted due to saturation of the weights, and the “pressure"
of the learning dynamics. An example where αst is large
is shown in Fig. 8. Here the non-associative depression of
the inhibitory synapses overwhelms the learning dynamics
so that the system settles with an increased simple-spike
rate during the first phase of the cycle. The average weight
configuration (Fig. 8(B)) reveals that the contribution of the
synaptic inputs are large only during those phases of the
cycle where they increase or decrease the simple-spike rate
from its mean output. A striking feature of this numerical
simulation is that the CS rate is not constant. The shape of
the CS probability is not predicted by the analysis because
our analytic methods do not apply when the weights are

Fig. 7 Complex-spike pattern sculpts simple spike pattern. (A) Simu-
lation of network in Fig. 1(A) without synaptic plasticity (histogram of
1000 cycles). Sinusoidal modulation (grey) causes a peak in complex-
spike probability during second half of cycle, but the simple-spike

probability (black) is constant. (B) After 500 cycles of CSTDP at the
parallel fiber synapse onto the Purkinje cell, the simple-spike probabil-
ity (black) is reduced during the phase where the complex spikes were
high. The complex spikes (grey) are now at a constant maintenance rate
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Fig. 8 Synaptic weight minimization by combining excitatory with
inhibitory plasticity. (A) Simulation of complex spikes (grey) and sim-
ple spikes (black) in a single Purkinje cell during oscillatory vestibular
stimulation (Barmack, 1995). Result of simulation described in the text
showing the same antiphasic response of simple spikes with respect

to climbing fiber activity. (B) Average synaptic weights for parallel
fibers (solid) and stellate cells (broken) onto model Purkinje cell during
sample time where data was take in (A), where xn labels the beginning
of the PSP that is scaled by the weight. Synaptic weights are at their
minimum value that generates the spike rates

saturated at a fixed boundary. The numerical results suggest
that non-constant spike probability could result if there is a
strong non-associative component to the learning rule.

Discussion

In this paper, we derived the learning dynamics of cere-
bellar Purkinje cells that results from plasticity at synapses
onto Purkinje cells. Depression of parallel fiber inputs, and
potentiation of inhibitory interneuron inputs, was assumed
to be caused by repeated pairing with complex spikes and
reversed by a non-associative LTP. We showed that if the
synaptic inputs are correlated in the temporal domain, then
the timing of the LTD window is critical for stable learning.
Instabilities would be observable as oscillations in simple-
spike histograms where the frequency depends on the mis-
match between the CSTDP learning rule and the efficacy of
parallel fibers to generate complex spikes (or the efficacy of
stellate cells to inhibit complex spikes). The absence of these
oscillations strongly constrains candidate CSTDP learning
rules to predict that the window of LTD must be delayed to
follow the parallel fiber by at least 50 msec and the maxi-
mum depression would be at about 100 msec. Some recent
experimental findings agree with this range of delays in our
prediction for the timing window for the CSTDP learning
rules of parallel fibers (Wang et al., 2000).

Our results regarding the timing of cerebellar LTD were
consistent with what is known about the mechanisms of
associative LTD at the PF synapse onto Purkinje cells. If
parallel fiber LTD were dependent on postsynaptic NMDA
receptors, then no delay of the learning window, with respect
to the PF EPSP could be realized. An unstable learning rule
would result because an NMDA-based learning rule takes
the form of an alpha-function (Bell et al., 1997c) that we
have shown is unstable (Fig. 5). However, the NMDA-based
learning rule is stable in the case of the cerebellum-like
electrosensory processing structure in mormyrid electric fish
(Roberts and Bell, 2000, 2002). Purkinje-like cells in the
mormyrid generate their own dendritic spikes, implying that

the PF directly affects the dendritic spike probability via an
EPSP that matches the learning function (Bell et al., 1997c).
As a result, the learning dynamics are stable in the sense that
oscillations are not generated within the electric discharge
cycle.

In contrast, LTD in the cerebellum is independent of post-
synaptic NMDA receptors, and this independence leads to a
different shape of the LTD window. Metabotropic glutamate
receptors in combination with second messengers may delay
the processes that cause LTD from pairing with a complex-
spike (Houk and Alford, 1996; Doi et al., 2005; Steuber and
Willshaw, 2004), possibly taking a form resembling the affect
of PF spikes on the complex-spike probability (Fig. 4(C)).
The result would be a learning rule that is stable. However,
this restriction imposed by stability on the STDP learning
rule forbids the possibility of the window of LTD either pre-
ceding the PF spike or following the PF spike by more than
80 msec.

The model of cerebellar learning in the present model
did not have an explicit representation of mossy fibers spike
patterns. Thus, two essential issues were absent from the
analysis: (1) how granule cells encode mossy fiber infor-
mation into parallel fiber activity, and (2) how mossy fiber
that project to the cerebellar nuclei affect the dynamics of
cerebellar learning dynamics. Although there is consider-
able theoretical discussion of the first issue in the literature
(Albus, 1971; Marr, 1969; Buonomano and Mauk, 1994;
Schweighofer et al., 2001), there is little experimental data
due to the difficulty of recording from granule cells in vivo
(Chadderton et al., 2004; Simpson et al., 2005). The present
model assumes that the granule cells respond with delays
following an sensory or motor event, but this assumption
must remain conjectural until further data is available.

The second issue, how mossy fiber collaterals to the cere-
bellar nuclei affect the dynamics of the system, is partially ad-
dressed by the analysis of complex-spike modulation (Figs. 7
and 8). Since the mossy fibers would be carrying the informa-
tion that is also re-coded by granule cells, possible at delays
(Buonomano and Mauk, 1994; Roberts, 2005), then the di-
rect effect would be to reduce the complex-spike response
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during the time of the event encoded as mossy-fiber activity.
The results following CSTDP would be an increase in simple
spike rate that is coincident with the mossy fiber activity. The
details would depend on the convergence of mossy fibers and
Purkinje cells in the cerebellar nucleus, because these inputs
could cancel if there is a balanced convergence.

Another source of dynamics into the systems that is not
included in our model is climbing fiber collaterals to cerebel-
lar nuclei. Because of the low rate of climbing fiber spikes,
the effects may not be as prominent as mossy fiber collat-
erals. If the synaptic inputs are particularly strong, then the
effect could force a phase shift of the simple spike pattern.

The model does not include an explicit representation of
convergence of parallel fibers onto inhibitory interneurons
in the molecular layer. The efficacy of parallel fibers onto
stellate cells is quite strong and a spike from a single par-
allel fiber can result in a spike on a stellate cell (Barbour,
1993). One would then expect that few stellate cells deliver
only a single spike per stimulus cycle. However, the pres-
ence of more spikes per cycle do not affect the qualitative
aspects of the results, unless the distribution of spike times
is uniform throughout the stimulus cycle. The effectiveness
of the inhibitory inputs, in contributing to the final tempo-
ral pattern of simple spikes, is increased proportionally to
the narrowness of the temporal distribution of the spike tim-
ings during the cycle (Roberts, 2005). The present model
investigates the extreme case where the stellate cells spike
only once per cycle, but that assumption could be softened
with similar results as long as each stellate cell spike pat-
tern delivers a different temporal pattern the the Purkinje
cell.

The temporal correlation of the parallel fiber spiking
activity have been represented by delay-lines in our model.
We have assumed that this is an approximation to the actual
parallel fiber activity patterns during sensory stimulations.
The mechanisms for the delay lines has been numerically
explored in the case of eye-blink conditioning (Buonomano
and Mauk, 1994), and are possibly due to recurrent interac-
tion of granule cells with inhibitory Golgi cells. There has
been a substantial amount of modeling studies to determine
the function of Golgi cells. The proposed ideas include:
maintaining the parallel fibers in a narrow range of activity
in both time and space (Pellionisz and Szentágothai, 1973),
causing oscillations in the firing rates of granule cells (Maex
and DeSchutter, 1998; Nagano and Ohmi, 1978; Roberts,
1997; Vos et al., 1999), and generating a broader range of
timing relative to a sensory stimulus in the parallel fibers than
is available in th mossy fiber inputs (Buonomano and Mauk,
1994). However, the recordings of granule cells (Chadderton
et al., 2004) during sensory stimuli have not yet revealed
the validity of these hypotheses. Our analytic and numerical
methods can be modified to account for the actual parallel
fiber spike patterns when they become available, but the

conclusion remains valid, that learning dynamics constrain
the likely CSTDP learning rule during natural cerebellar
function.

Appendix

The purpose of this Appendix is to extend the learning sta-
bility criterion of Williams et al. (2003) to the case where
a second pool of synaptic inputs has an independent STDP
learning function. In the main text (Eq. (10)), we use this
result to test the learning stability in the presence of a pool
of inhibitory stellate-cell synapses in addition to the paral-
lel fiber synapses. We assume that at each xn , there exists
presynaptic spikes for two types of weights, we

n and vi
n . The

e-type synapses have postsynaptic potential εe(xn) and STDP
learning rule Le(xn), and the i-type synapses have postsynap-
tic potential εi (xn) and STDP learning rule Li (xn). Let the
vector of the weights be -W = (we

1, . . . , w
e
N , wi

1, . . . , w
i
N )T ,

where N is the number of weights and T is the transpose.
The coefficient matrix, Q, of the of the linearized weight

dynamics (Eq. (28), Williams et al., 2003)

!〈 -W 〉 = Q〈 -W 〉 (12)

has the block form:

Q =
(

Qee Qei

Qie Qii

)
(13)

As shown in Williams et al. (2003), stability of the learning
dynamics depends on the eigenvalues of Q. Each block of
Q is circulant and all circulant matrices are simultaneously
diagonalizable by a single coordinate transformation S, so
that

(
S−1 0

0 S−1

)
Q

(
S 0

0 S

)
=

(
S−1 Qee S S−1 Qei S
S−1 Qie S S−1 Qii S

)

=
(

(ee (ei

(ie (i i

)
= (Q, (14)

where (ee is the diagonal matrix of the eigenvalues, (ee =
diag(λee

1 , . . . , λee
N ), etc. The eigenvalues are the roots of

det((Q − λI ) = (−1)r
N∏

n=1

det

(
λee

n − λ λei
n

λie
n λi i

n − λ

)

(15)

where λee
n is the nth eigenvalue of (ee, and r is the num-

ber of row and column interchanges to bring the matrix
into the final form. Thus, the roots of det((Q − λI ) are
the union of the roots of N quadratics, each of the form,
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λ2 − (λee
n + λi i

n )λ + (λee
n λi i

n − λei
n λie

n ). In the limiting case
of slow-learning, dense-spacing, and long-period (Williams
et al., 2003), we transform to the continuous Fourier trans-
forms of the learning rule and postsynaptic potential, λee

n →
F[Le](k)F[εe](k), with n → k. The non-zero roots can then
be shown to be λ = F[Le](k)F[εe](k) + F[Li ](k)F[εi ](k).
Thus, the excitatory and inhibitory terms separate in the sta-
bility criterion

F[Le](k)F[εe](k)+F[Li ](k)F[εi ](k)<0, for all k (16)

as stated in Eq. (10).
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