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Abstract

A quantitative model of auditory learning is presented to predict how auditory patterns are stored in the songbird
auditory forebrain. This research focuses on the caudomedial nidopallium (NCM) in the songbird telencephalon, a
candidate site for song perception and the formation of song auditory memories. The objective is to introduce simplified
features of bird song that could be used by the auditory forebrain to identify and distinguish memorized songs. The
results elucidate which biological mechanisms are sufficient for temporal pattern prediction and the storage of higher-
order patterns, where by higher-order, we mean the specific arrangement of syllables into song motifs (phrases) to
reveal neural mechanisms of syntax.
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Auditory processing and auditory memories are
essential to animals that use vocal communication in
social behavoir (see reviews in [1]). In songbirds, vo-
cal learning and retention of vocalizations depends
on the ability to hear a song model and to perfect
vocal performance through auditory feedback [2–4].
Songbirds also rely on auditory processing to iden-
tify and to discriminate among individuals of their
species [5,6]. Although song auditory processing and
memory play central roles, their underlying neuronal
mechanisms remain largely unknown.

Song production and learning depends on a well-
characterized set of interconnected forebrain nuclei,
but less is known about areas involved in song per-
ception and discrimination. Furthermore, little is
known about the formation and storage of song au-
ditory memories. It is known that auditory infor-
mation ascends along a brainstem pathway that is
conserved in vertebrates, reaching the telencephalon
through field-L. Field-L projections represent path-
ways for auditory information to reach higher-order
areas [7–10], but the role of these targets in song
auditory processing and leaning, and how song ex-

posure affects song-evoked behaviors, is unclear.

1. NCM: a candidate site for song perception

and the formation of song auditory memories.

The caudomedial nidopallium (NCM), a telen-
cephalic field-L target, is analogous to supragranu-
lar layers of the mammalian auditory cortex [14,10].
One source of evidence is from activity-dependent
genes, such as zenk, that are expressed in the brain
upon activation of neurons. Analysis of gene ex-
pression has been very useful in revealing patterns
of brain activation in response to specific stimuli
or behavioral contexts. NCM has the most marked
zenk induction response to song [15]. Zenk induction
in NCM is rapid and transient [16,17], being high-
est for conspecific song, as compared to heterospe-
cific song or tones [15]. Zenk induction decreases
markedly upon repeated song presentations (song-
specific “habituation”), it is re-elicited upon presen-
tation of a novel song [17], and is abolished by deaf-
ening [18].

Additional evidence of NCMs role in song learning
is from evoked electrophysiological responses to song
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Fig. 1. (A) Temporal habituation occurs when a sensory (auditory) input is compared with a previously stored template that
subtracts an expectation of the sensory image. The output is a constant unless the sensory input does not match the output of
the expectation generation. When a mismatch is present, the sensory template is updated. (B) Schematic summary diagram
representing connections of auditory structures (L1, L2 and L3 are subdivisions of field-L; NCM, caudomedial nidopallium;
Ov, nucleus ovoidalis (thalamus)). (C) Model of temporal habituation [11,12] consists of 2 inputs: a series of inputs delayed
(tn, tn+1 . . . tN ) with respect to the beginning of a stimulus, and a non-adaptive input (S) that represents the stimulus. The
expectation is generated by the series of delayed inputs and their weights are updated by an anti-Hebbian learning rule
[13,11,12]. The bottom panel shows a simulation of the inputs to the membrane potential after habituation. The adaptive
inputs sum (black, solid) to generate a negative image of the sensory input (grey, solid), and the average membrane potential
(black, dashed) is approximate constant (arbitrary units).

recorded in NCM. These responses are less brisk
and of longer latencies than in field-L, and show
some selectivity for conspecific song [19–21]. NCM
emerges as a major auditory processing station, and
some insight to its organization and function is pro-
vided by studying these evoked electrophysiological
responses.

The evoked electrophysiological responses of
NCM neurons to song auditory stimuli decrease
quickly upon repeated song presentations [19,20].
This habituation phenomenon is song-specific, since
a high response level can be restored by a novel song
stimulus, and habituation to specific songs is long-
lasting. Multiunit responses have been shown to de-
crease following repeated presentations of the same
conspecific song [19] when responses were recorded
for several different songs presented sequentially at
a single site. Each song elicited a different initial
response, but all habituated during training. The
multiunit responses were reduced by 60-80% during
habituation. Immediately after training, each song
was tested again and the habituated response level
achieved for a given song was retained even after
training with other songs [19,20].

Local injections of RNA and protein synthesis in-
hibitors show that the long-term maintenance of the
NCM habituation to song is dependent on song-
induced gene expression [19]. The zenk gene is a
likely candidate for regulating long-lasting neuronal
changes in NCM. Zenk exhibits a robust song reg-
ulation and has been implicated in long-term neu-

ronal plasticity in other systems. To predict the ex-
pression of zenk in NCM, we developed an adaptive
model of evoked responses, and used the model to
demonstrate how a population of NCM neurons dis-
tinguish between two songs.

2. Model of auditory adaptation in NCM.

To investigate the principles of temporal habit-
uation [13,11,12] (Fig. 1) in the songbird auditory
system, we developed a model based on synaptic
plasticity that could explain the habituation seen in
the auditory forebrain of songbirds. The conceptual
framework of temporal habituation is shown in Fig.
1A where a temporal pattern, such as an auditory
input, is repeatedly presented to the bird. The tem-
poral pattern triggers an expectation generator to
predict the syllables of the song. This expectation
is subtracted from the direct sensory input pattern
and the output is an error between the expectation
and the actual sensory temporal pattern. The er-
ror signal then projects to either motor regions to
correct song production, or to perceptual regions to
determine the familiarity of the song.

The location of NCM in the auditory pathway is
shown in Fig. 1B. Auditory inputs enter the fore-
brain via a thalamic structure (nucleus ovoidalis,
Ov), and acoustic features of stimuli are coded in
spiking patterns of neurons in the subdivisions of
field-L (L1, L2, L3) [22]. This spike representation
projects to NCM where the temporal patterns are

2



presumed to be combined in neurons of NCM that
habituate to repeated auditory patterns.

A mechanistic model of the temporal habituation
(Fig. 1C, [11,12])presupposes a time-ordered series
of adapting synaptic inputs (such as from field-L)
to a habituating neuron (in NCM). The spike-times
of the adapting inputs are consistently correlated
with a non-adapting input that generates an evoked
response in the habituating neuron. The mechanism
of habituation is an anti-Hebbian form of synaptic
plasticity that depresses the synaptic efficacy when
input spikes are correlated with output spikes, and
otherwise potentiates the active synapses.

Modeling Methods. In our model of the NCM, we
represented each model neuron as a single compart-
ment, spike-response model [23] (see [11,12] for de-
tails). Response functions, or kernels, correspond
to the postsynaptic potential (PSP), and represent
the effects on the membrane potential caused by
spikes. We separated fast, electrophysiological pro-
cesses from slow, adaptive processes by represent-
ing time in 2 components, (t, n), where t denotes
the time following the beginning of each stimula-
tion cycle, and n represents the number of cycles.
If T is the period of the stimulus cycle, then (t +
T, n) = (t, n + 1). In these variables, t parametrized
the model’s prediction of the evoked response, and
n parametrized changes of the model neuron’s re-
sponse during habituation.

We represented the membrane potential, V (t, n),
as a random variable with a normal distribution
function: a mean value of V (t, n), and a variance
of σ [24]. A probability function, Pθ(t, n) = (1 +
exp(−σ(V (t, n) − θ)))−1, represented the probabil-
ity that a spike occured at time (t, n). The contri-
bution to the NCM-neuron model’s membrane po-
tential from synaptic inputs was computed using
a weighted sum of excitatory response kernels, ǫ(t)
where t = 0 represents the time that the presynap-
tic spike arrives at the synapse so that ǫ(t) = 0 if
t ≤ 0. The contribution from an input neuron j was
represented by presynaptic spike probability, con-
volved with the response kernel and weighted by the
synaptic strength wij , with wij > 0. The average
membrane potential of the i-th NCM neuron was
〈V NCM

i (t, n)〉 = vi(t)+
∑

j wij

∑
t′ Pj(t

′, n)ǫ(t−t′),
where vi(t) is a non-adapting input to NCM neuroni,
and the last term is the contribution from the cells
that make synaptic contact with i-th NCM neuron.
The output of each NCM neuron was represented
by the spike probability function, PNCM

i (t, n), that
quantified the probability of a spike, where t de-

notes the time during the song presentation that be-
gins at time n. The spike probability quantified the
evoked response, and how the response changes dur-
ing habituation. When a temporal pattern is first
presented, the variance of the membrane potential is
large, representing a high firing rate at the peaks of
the input excitation. This variance of the response
was used to predict zenk expression in each NCM
neuron, because zenk expression has been shown to
depend on the strength of the response. The result is
a prediction of the percentage of NCM neurons that
express zenk in response to repeated presentations
of conspecific songs.

The biologically plausible assumptions for the
NCM response model were (see Fig. 2A):

Assumption 1: A population of feature selective
neurons. These neurons encode acoustic features
based on linear response properties of field-L [22].
Each neuron responded with an increased spike
probability to acoustic features extracted from the
syllables of conspecific song. The responses were
used to drive a pause-duration generator that en-
coded the pauses between the occurrence of each
acoustic feature. The biophysical mechanism could
be similar to delay-tuning found in the inferior
colliculus of bats [25]; post-inhibitory rebound fol-
lows an inhibitory input from the first sound, and
the second sound injects a subthreshold excitatory
postsynaptic potential. Membrane properties of the
cell determine the timing when the rebound and
excitation add to generate a spike. Acoustic fea-
tures separated by pauses of over 100 msec can be
explained with this mechanism [26]. In our simula-
tion, there are potentially 100 units for each feature,
each selects a different pause (in msec) between
each occurrence of the feature.

Assumption 2: Delay-lines from each feature selec-
tive neuron to NCM. The temporal structure of the
song must provide all of the information for habitu-
ation. Thus, each syllable response must generate a
series of inputs to the habituating cell so that a sylla-
ble that consistently occurs before a second syllable
can generate a series of adaptive inputs to an NCM
neuron that cancel the response of the NCM neuron
to the second syllable. Two possible mechanisms for
these delays would be either a strong rebound from
an inhibitory input or a transient potassium current
[27] following a subthreshold excitatory input. Vary-
ing membrane properties in a set of neurons could
yield a range of delays following inputs from feature-
duration selective cells.

Assumption 3: Spike-timing dependent plastic-
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Fig. 2. Model of an NCM neuron that habituates to temporal patterns. (A) The acoustic features of syllables were detected
by feature selective neurons that initiated spikes at different delays in a set of neurons (△t1,△t2, . . .) that project to the
NCM-neuron. The synaptic weights were allowed to adapt by an activity dependent learning rule that causes the evoked
response to relax to a fixed point. The song syllables also had a direct, non-adaptive synaptic input to the NCM-neuron as a
series of excitatory postsynaptic potentials. (B) The expression of zenk predicted by the model for 2 presentations of conspecific
song. Top panel (S1 → S1): S1 is played for 50 song presentation cycles, then repeated another 50th cycles after a delay.
Bottom panel (S1 → S2): S1 is played for 50 song presentation cycles, then S2 is played for 50th cycles. The responses of a
grid of model cells are marked with a circle (◦) if they responded to the first presentation, and marked with a dot (·) if they
responded to the second presentation. Model cells that responded to both presentations are double marked (⊙) to represent
zenk expression in both the nucleus and the cytoplasm. The response to the second song was much greater for the novel song
(bottom panel) than for the repeated song (top panel) because the number of cells expressing zenk in their nucleus was greater.

ity (STDP) with a learning rule that sculpts the
adaptive input to cancel the sensory image from a
non-adaptive input. The average change in synaptic
weight per cycle was given by the non-associative
weight change minus the average associative change,
〈△we(t, n)〉 = α −

∑
t′ βL(t′ − t)PNCM (t, n). Al-

though it is unknown whether such a synaptic
learning rule exists at the input synapses onto
NCM neurons, we are most interested in the learn-
ing dynamics of this particular learning rule; the
decorrelation of inputs such that the output of the
NCM neuron’s evoked response approximates a
constant during the song presentation. We have
previously shown that this STDP leaning rule has
a fixed point where the postsynaptic spike proba-
bility is PNCM

i (t, n → ∞) = α/β [11] that depends
o the specifics on the learning rule for the adapting
synapses. Due to the stability of the fixed point, the
model correctly predicted the effects of habituation
as would be caused by synaptic plasticity at the
synapse from cells in field-L onto NCM-neurons.

Assumption 4: Non-adaptive response to auditory
stimulus. To initiate a strong response to the song at
the beginning of the learning protocol, we modeled
the NCM neuron such that each neuron received a
non-adaptive excitatory postsynaptic potential.

The results of our simulations provide an example

to demonstrate the effects of habituation on NCM-
neuron responses to song presentations. We quan-
tified the probability of NCM-neurons responding
to stimulation to estimate the percentage of cells
that express zenk during each presentation. The re-
sult can be compared with the percentage of zenk-
positive cells in the following stimulation paradigm.
Birds are stimulated with 2 songs, for 5 min. each,
separated by 25 min. to allow the zenk-expression
evoked by the first song (S1) to be transported to the
cytoplasm, while the zenk-expression evoked by the
second song (S2) remains in the nucleus. Thus, this
paradigm permits the identification of NCM neu-
rons that respond to 2 song auditory stimuli, or to
each of the stimuli alone, in the same bird.

3. Result: Habituation to multiple patterns

of stimuli.

To investigate habituation to song structure, our
numerical simulation used 2 finch songs to drive the
model. Features were extracted from the song by
convolving the pressure wave with a filter bank of
gamma-tone filters (te−t/τcos(ωt)) to simulate pri-
mary auditory processing. Frequency bands were
then combined with relative delays to generate a
field-L response. The responses represented feature-
selective cells in the model with an increased spike
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rate, followed by a series of postsynaptic potentials
in the NCM-neuron. An activity dependent synaptic
learning rule altered the synaptic efficacy from the
delay fibers onto the NCM model neurons (Fig. 2A).
The resulting output of the NCM-neuron relaxed to
its fixed-point [11]. The activity dependent plastic-
ity reduced the variance of the membrane potential,
and led to a prediction of a reduced expression of
zenk.

The results of a simulation are shown in Fig. 2B.
We tested the difference between the nuclear expres-
sion of zenk for two presentations of the same song
(S1 → S1) compared with the presentation of two
different songs (S1 → S2). After the first song is pre-
sented 50 times, a second song is presented 50 times
following a delay. When the first song was was used
in the second presentation, the expression of zenk in
the nucleus was greatly reduced relative to the cy-
toplasmic expression, in agreement with experimen-
tal studies [17]. The interference between different
songs, resulting in double expression, is partly due
to similar features that are shared by both songs so
that the NCM neuron re-adapts during each presen-
tation.

We have shown that the features that are encoded
in the neural activity of cells that project to NCM
limits what song patterns can be distinguished. In
the present model, we used a limited set of fea-
tures encoded in the projection to NCM and, there-
fore, the model cannot presently identify complex
arrangements of syllables that are distinguished by
NCM. A more complete set of projection neurons
to NCM, such as found in Field-L [22], would in-
crease the number of auditory patterns that could be
stored by this system, particularly selection for spec-
tral features in addition to temporal features. In ad-
dition, the present model does not impose a spatial
structure on the responses of cells in NCM, there-
fore no spatial map of zenk expression was predicted.
In future studies, the model will be compared with
zenk spatial patterns to determine whether acoustic
features are projected to selective regions of NCM.
Using the extended model, the model will predict
how the spike probability of NCM-neurons changes
during song presentation and generate a prediction
comparable with the probability of zenk-expression
in NCM that follows repeated presentations of con-
specific songs.
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