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Abstract Cerebellum-like structures are compared for two
sensory systems: electrosensory and auditory. The electro-
sensory lateral line lobe of mormyrid electric fish is revie-
wed and the neural representation of electrosensory objects in
this structure is modeled and discussed. The dorsal cochlear
nucleus in the auditory brainstem of mammals is reviewed
and new data are presented that characterize the responses
of neurons in this structure in the mouse. Similarities bet-
ween the electrosensory and auditory cerebellum-like struc-
tures are shown, in particular adaptive processes that may
reduce responses to predictable stimuli. We suggest that the
differences in the types of sensory objects may drive the dif-
ferences in the anatomical and physiological characteristics
of these two cerebellum-like structures.

Keywords Mormyrid · Electrosensory · Mouse · Auditory ·
Purkinje cell · Cartwheel cell · Plasticity

1 Introduction

Object identification and localization requires the nervous
system to process streams of sensory information and quickly
analyze sensory scenes. Fast localization of objects can be
essential to the survival of an animal. Thus, it is paramount
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that features specific to a particular object are analyzed at the
earliest stages of sensory processing. However, to localize
an object, clear identification of sensory features (Rogers
and Butler 1992) must be extracted from the background
noise of the environment, and the distinction between noise
and interesting objects is dependent on past experiences and
present goals of the animal.

In the present article, we will restrict our discussion to
the commonalities and differences in processing informa-
tion in two sensory modalities: electrosensory and auditory.
One commonality between these sensory modalities appears
to be anatomical; their sensory afferents project to the cen-
tral nervous system via the eighth cranial nerve. A second
anatomical commonality is that the afferents project to a
cerebellum-like structure for an initial stage of processing.

Cerebellum-like structures are so-called because of their
anatomical resemblance to the cerebellum (Fig. 1). These
structures are characterized by a laminar organization with
a layer of principal cells that possess extensive apical den-
drites. These dendrites receive synaptic inputs from a large
number of parallel fibers in a molecular layer. The cerebel-
lum proper has a layer of Purkinje cells that receive inputs
from up to 200,000 parallel fibers (Albus 1971; Harvey and
Napper 1991). The Purkinje cells project to the cerebellar
nuclei and inhibitory postsynaptic currents in neurons of the
cerebellar nuclei are caused by axonal, simple-spikes from
Purkinje cells. An additional input to Purkinje cells is from a
climbing fiber that causes a large depolarization of the den-
drites (complex spike) with every presynaptic spike.

An association between the complex spike and parallel
fiber spikes leads to long-term depression (LTD) of the paral-
lel fiber synaptic current. A class of theories on cerebellar
function (Albus 1971; Marr 1969) presumes that the paral-
lel fibers provide context information that is sculpted by
climbing fiber activity to generate the temporal patterns of
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Fig. 1 Cerebellum-like structures. a A simplified circuit diagram of the
cerebellum. Purkinje cells are contacted by parallel fibers and inhibi-
tory stellate cells (st), and project with inhibitory inputs to the cerebellar
nuclei (CN). One climbing fiber (CF) excites each Purkinje cell and they
originate in the inferior (IO). There is an inhibitory projection from the
cerebellar nuclei to the inferior olive, but the functional role is unclear.
b The cerebellum-like electrosensory lateral line lobe (ELL) of mormy-
rid electric fish. Parallel fibers arise from granule cells in the eminentia
granularis posterior (EGp) and contact the Purkinje-like medium gan-
glion cells (MG1 & MG2) and the efferent cells (large ganglion, LG and
large fusiform, LF). The MG cells inhibit the efferent cells. These cell

types also receive EOD command timing information from the juxtalo-
bar nucleus and electrosensory afferent inputs. The efferent cells project
to the preementialis nucleus (PreN). The inset shows the STDP learning
rule with synaptic change as a function of time between the pre- and
postsynaptic spikes. c The cerebellum-like dorsal cochlear nucleus in
the mammalian brainstem. Parallel fibers that arise from granule cells
(g) throughout the DCN contact the Purkinje-like cartwheel cells (CW)
and the efferent fusiform (Fu) cells. The fusiform cells project to the
inferior colliculus. Insets show the STDP learning rules for both the
CW cells and the Fu cells

Purkinje cell simple-spike output. Unfortunately, the precise
timing relation between the complex spike and the paral-
lel fiber spike that maximizes LTD is not known because of
discrepancies between studies (Karachot et al. 1994; Chen
and Thompson 1995; Linden and Connor 1993; Lev-Ram
et al. 1995), but recent studies are pointing in the direction
that the interval of maximal LTD occurs when the com-
plex spike follows the parallel fiber spike (Lev-Ram et al.
2002; Coesmans et al. 2004; Roberts 2007), and the LTD
can be reversed by long-term potentiation. Fortunately, the
exact timing has been well-characterized in the following
cerebellum-like structures.

Electrosensory information is initially processed by the
electrosensory lateral line lobe (ELL), a cerebellum-like
structure in the hindbrain of mormyrid electric fish. This
structure has a layer of Purkinje-like, medium ganglion (MG)
cells that receive parallel fiber inputs, and these MG cells
inhibit the efferent cells of the ELL. Like Purkinje cells,
MG cells have two types of spikes: broad, dendritic spikes
and small, axonal spikes. However, the dendritic spikes are
not generated by an external nucleus, but are generated by
the depolarization state of the Purkinje-like cell itself. As
in the cerebellum, the dendritic spikes are the postsynaptic
event that is associated with parallel fiber spikes to result
in LTD (Bell et al. 1997b; Han et al. 2000). In the next
section, we will propose that the functional consequence
of this synaptic plasticity is to reduce the sensory conse-
quences of predictable events such as motor actions of the
fish.

The second cerebellum-like structure that will be discus-
sed is the dorsal cochlear nucleus (DCN) in the mamma-
lian brain stem, an initial site of auditory processing. In the

DCN, the Purkinje-like cells are cartwheel cells, and like MG
cells, they generate their own dendritic spikes. An association
between the dendritic, complex spikes leads to LTD (Fujino
and Oertel 2003; Tzounopoulos et al. 2004), and the cartw-
heel cells inhibit the efferent cells on the DCN (Golding and
Oertel 1997). The DCN is likely an adaptive filter like the
ELL (Oertel and Young 2004), but the relationship to motor
activity is not as straight forward as with the electrosensory
system.

The ELL and DCN are very similar structures in both ana-
tomy and physiology, and possibly even function. However,
there are very important differences that may be related to
the types of objects that are detected by each sensory moda-
lity. Electrosensory objects are spatially extended in three
dimensions, and are projected onto the two-dimensional sur-
face of the fish’s skin. In contrast, auditory objects are essen-
tially embedded in a pressure wave that is projected onto
frequency and time dimensions by the cochlea, the auditory
end-organ. These differences in the nature of the objects that
each sensory system is attempting to identify and localize
may explain the differences that we find when comparing
the two cerebellum-like structures.

The approach that we will use to explore the differences
between these structures is through mathematical modeling
of the neural activity. Models of sensory adaptation that have
been developed in each of these sensory systems to yield
insights into general principles of learning in biological sys-
tems, insights that will be applied to our questions about
how the early stages of sensory processing adapt to critical
features of auditory objects. In the next section, we discuss
the electrosensory adaptation system, and make comparisons
with the auditory system in following sections.
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Fig. 2 Model of the electrosensory lateral line lobe (ELL) that can-
cels predictable electrosensory images. a The electric organ corollary
discharge (CD) signals enter the ELL through the EGp that contains
granule cells (G cells) giving rise to parallel fibers responding as tap-
ped delay lines following the CD. Parallel fibers (PF) synapses excite
Purkinje-like cells (PC). Primary afferent fibers from electrosensory
receptors enter the ELL and transmit temporal sensory pattern to PC.

STDP at the PF synapse onto PC causes the output to adapt to the tem-
poral pattern of the electrosensory image. b Simulated time evolution
of adaptive response as measured by the variance of the model mem-
brane potential versus the number of EOD cycle. For the first 100 EOD
cycles, the command signal is paired with the sensory input (C+S),
then the command cycle is presented alone c. Insets show the model’s
membrane potential during representative EOD-cycles

2 Expectation cancellation in mormyrid electric fish

A striking example of adaptive processing of spatiotempo-
ral sensory patterns is found in the primary electrosensory
processing system of mormyrid electric fish. The mormyrid
electric fish senses its environment by emitting an electric
organ discharge (EOD) and detecting the perturbations that
nearby objects cause in the self-generated electric field. The
fish also detects low-frequency, externally generated elec-
tric fields. However, the electroreceptors that are sensitive to
external signals also respond to the fish’s own EOD so that
the EOD interferes with the detection of external sources.
Since the fish generates the motor command for each EOD,
the reafferent sensory signal is predictable. Mormyrids have
developed a mechanism to cancel predictable electrosensory
signals so that the fish is exquisitely sensitive to novel elec-
trical activity in its environment.

Electrosensory information is transferred from the skin
to the cortex of the ELL by electrosensory afferents. Motor
information is also transferred to the ELL indicating when an
EOD has taken place. These motor signals are called electric
organ corollary discharge (CD) signals and are time-locked
with the EOD motor command which elicits the EOD. A gra-
nule cell layer receives corollary discharge signals at various
delays following the EOD (Bell et al. 1992) and the granule
cells project to Purkinje-like cells via parallel fibers (Fig. 2a).
Purkinje-like cells also receive electrosensory input from the
periphery via interneurons in the deep layers of ELL. Repea-
ted presentation of an electrosensory stimulus that is correla-
ted with the CD results in the cancellation of the Purkinje-like
cell’s predictable response to the sensory stimulus (Bell et al.
1993).

Spike-timing dependent plasticity (STDP) (Abbott and
Nelson 2000) at the parallel fiber synapse depresses the
synapse after pairings in which a dendritic spike was evoked

between 0 and 60 ms after the onset of the parallel fiber
postsynaptic potential, while pairings at all other delays yield
potentiation (Bell et al. 1993, 1997b). The plasticity of ELL
cells observed at the systems level (Bell et al. 1993) has been
shown to emerge from the learning rule measured in vitro
(Roberts and Bell 2000; Williams et al. 2003). Remarkably,
the modeling studies demonstrate that the STDP learning
rule measured in vitro is optimal for cancellation of sensory
images in the whole fish (Fig. 2b).

Two critical components of the model are necessary for
cancellation of sensory images. One component is that the
parallel fibers deliver a series of delayed postsynaptic poten-
tials (delay lines) with respect to the EOD. The delay lines
provide the necessary temporal structure needed for sensory
image cancellation to be sculpted out of the parallel-fiber
spikes. The second critical component is a synaptic learning
rule that drives the Purkinje-like cell to an equilibrium during
the correlated input. This second requirement is satisfied by
the STDP learning rule in the mormyrid fish, but any synaptic
adaptation mechanisms that drive the output neuron’s mem-
brane potential to an equilibrium could be used to model
similar cancellations of predictable signals, as demonstrated
in elasmobranchs (Nelson and Paulin 1995) and the cerebel-
lum (Medina and Mauk 2000; Roberts 2007).

The equilibrium of the learning dynamics is constant for
the passive electrosensory system. However, in the active
electrosensory system, the dendritic spike threshold of the
Purkinje-like neurons is modified so that the equilibrium of
the learning dynamics is not constant throughout the EOD
cycle (Roberts et al. 2006a; Sawtell et al. 2007). The result
is that the dynamics of the STDP learning rule drive the
Purkinje-like neurons to burst during a critical time follo-
wing the EOD to control the output neurons’ response to
electrosensory signals. This adaptive control of the ELL out-
put will presumably cancel expected sensory patterns that
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Fig. 3 One-dimensional network model of ELL. a Model connectivity
between cell types in ELL. b A chain of 800 neurons is represented on
a lattice where 4 cells (1 of each type: MG1, MG2, LF, LG) occupy
each lattice site. The neurons are synaptically coupled as shown by the
schematic overlay. The electrical image (left) corresponds to a conduc-
tive object placed near the skin. The model predicts the average mem-
brane potential (color scale) for each cell type at each lattice site during
the first 200 ms following the EOD command. The model is then used

to predict the pattern of the network activity during high EOD rate
and object movements of probing behavior. The predicted membrane
potential of efferent cells (LF and LG) is used to calculate the predicted
spike output rate of the ELL network. Intracellular recordings of each
cell type during slow EOD rates are used to fit the parameters of the
model. Arrows correspond to the cell that represents the activity of the
empirical recording

are encoded in the precise spike timings during each
burst.

2.1 Spatial localization of electrosensory objects

Lateral connections in ELL affect the response of neurons to
the presence of 3-D objects. Because of the “Mexican hat”
nature of the electric images (Caputi et al. 1998), a given
neuron population will experience sequences of excitatory
and inhibitory influences during object interference with the
field strength near the skin. This characterization of the input
to ELL determines the dynamic responses of neurons in ELL
to the projection of electric images on different parts on the
electrosensory surface.

The effects of lateral connectivity arise from the mutual
inhibitory connections between MG cells and their connec-
tion to efferent cells (Fig. 3). We hypothesize that the center-
surround receptive fields of neurons will superimpose on the
center-surround nature of the Mexican hat electric image.
Using a network model that was tuned with data from point-
stimuli (Mohr et al. 2002a,b), we predict the sensory image as
represented by the network of LF and LG cells for electrical
patterns encode images of novel objects.

Model of spatiotemporal responses to objects. Let y be a
location on the skin, and we have assumed that the mormy-
romast afferent projections are somatotopic so that there is a
mapping from any region on the skin (y) to a region in ELL
(x) where x is a location in a specified zone (MZ or DLZ) of
the ELL. For our present example shown in Fig. 3, we restrict
our attention to the 1-dimensional case.

The spike-probability function for an LF cell located at x
in the ELL is denoted by PL F (x, t, n), where t is the time

following the command during an EOD cycle, and n indexes
which EOD cycle. Likewise for LG cells, PLG(x, t, n), MG1

cells, P1(x, t, n), and MG2 cells, P2(x, t, n). Each spike-
probability function is modeled as dependent on a membrane
potential, V (x, t, n), that is defined as the sum of all synaptic
inputs. Thus, the spike-probability function is

Pa(x, t, n) = (1 + exp[−µ(Va(x, t, n) − θ)])−1, (1)

for each type of principal cell (a = LF, LG, MG1, or MG2).
The spike threshold, θ , and noise parameter, µ, are distinct
for each cell type.

Excitatory synaptic inputs contribute to the membrane
potential via postsynaptic-potential (PSP) kernels, E(t) =
(t/E) exp(−t/E), that are based on normalized alpha func-
tions in our example (Fig. 3). Parallel fiber inputs are repre-
sented by weighted postsynaptic-potential kernels where the
weights are labeled by the time following the EOD com-
mand, w(x, t, n). For MG cells (but not LF and LG cells), the
parallel fiber weights depend on the EOD cycle, n, because
these synapses are plastic and follow an STDP learning rule.
Stellate cell inputs to MG cells are also assumed to be plas-
tic and contribute to the membrane potential with negative
weights, v(x, t, n) < 0. The stellate cells respond to paral-
lel fiber input with an excitatory PSP that is then convolved
with the inhibitory PSP kernel in the principal cell. We then
approximate stellate filtering of the parallel fiber input with
a “self-convolved” PSP kernel, E (2)(t) = E ∗ E(t), where
the asterisk represents convolution. Thus, the contribution to
membrane potential from the molecular layer is expressed as
Vmol(x, t, n) = w(x, t, n) ∗ E(t) + v(x, t, n) ∗ E (2)(t) for
MG cells, and the n-dependency of the weights are dropped
for LF and LG cells.
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Lateral connections between principal cells are a result
of MG cell axons that terminate below the ganglion layer
(Han et al. 1999). The spread of these inhibitory synaptic
connections has been estimated by morphological studies of
axons and dendrites of the principal cells (Han et al. 1999).
The weight function is a Gaussian function of the location
on the ELL,

W (x) = u/
(
s
√

π
)

exp[−(x/s)2].

Since MG cells are GABA-ergic, the weights are negative,
u < 0.

Synaptic input from granular cells in the deep layers relays
command signals from the juxtalobar nucleus and electro-
sensory afferents. For a constant sensory input, we denote
the deep layer contribution to the membrane potential as
Vdeep(x, t) = Vjln(t)+Va f (x, t). The afferent signal arrived
at the principal cells after a chain of transformations:

Voltage across skin (v(x))

• mormyromast afferent latency (L(x) = L/v(x))

• granular cell spike probability (PG(x, t))

• principal cell PSP (Da E ∗ PG(x, t))

The granular cell response to the afferent spikes involves a
function of the time difference between the EOD command,
t̂c, and the afferent latency, Ga f (L(x)− t̂c, ti ). We have assu-
med that the granular cells respond to a summation of EPSPs
that cross a threshold. The granular cells that respond to jux-
talobar nucleus input, G jln(ti − t̂c), also contribute to the
principal cell PSP. If Da is the weight of the deep-layer synap-
tic input, then the contribution to the membrane potential is
Vdeep(x, t) = Da E ∗ [Ga f (L(x) − t̂c, ti ) + G jln(ti − t̂c)].
These functions have been fit to data that compared the PSP
in principal cells for different delays between the EOD com-
mand and a sensory stimulus (Mohr et al. 2002a).

We then express the membrane potentials of the principal
cells as

V1(x, t, n) = W21(x) ∗ (E(t) ∗ P2(x, t, n))

+ V mol
1 (x, t, n) + V deep

1 (x, t) (2)

V2(x, t, n) = W12(x) ∗ (E(t) ∗ P1(x, t, n))

+ V mol
2 (x, t, n) + V deep

2 (x, t) (3)

VF (x, t, n) = W1F (x) ∗ (E(t) ∗ P1(x, t, n))

+ V mol
F (x, t) + V deep

F (x, t) (4)

VG(x, t, n) = W2G(x) ∗ (E(t) ∗ P2(x, t, n))

+ V mol
G (x, t) + V deep

G (x, t) (5)

where we made the approximation that all PSP were descri-
bed by the same function.

The internal dynamics of the recurrent layer have been
calculated using a perturbation expansion (Roberts 2004).
The average membrane potential is represented by,
〈Va(x, t, n)〉 = va(x, t, n)+Wab∗E∗Pa(x, t, n), where va is
the membrane potential of each neuron without the recurrent
inputs in Eqs. 2 and 3.

We expand the spike probability functions in the high-
noise limit, µ ≈ 0, and then we collect the terms to arrive at
the synaptic loop-expansion (Roberts 2004),

Pa(x, t, n) = pa(x, t, n) +
∞∑

K=1

×
(µ

4

)K
W(K )(x) ∗ E (K )(t) ∗ pa(x, t, n),

(6)

where pa(x, t, n) is the spike probability vector without
synaptic input from other elements of the recurrent layer. The
loop-expansion formula (Eq. 6) converges for weak synap-
tic connections and high noise. We are justified in trunca-
ting the expansion (Roberts 2004) because both MG cell
types respond to the command with an EPSP simultaneously
implying that the system is in an asynchronous state.

Using the network model that is tuned with data from
point-stimuli (Mohr et al. 2002a,b), we have predicted the
image of a conductive object as represented by the network
of LF and LG cells for electrical edge-images (Fig. 3b).
Using data from recordings of the sensory response of single
cells to similar edges recorded by our collaborators, we have
quantified the average membrane potential and spike proba-
bility from electrophysiological recordings. Since the model
contains a subset of the identified cell types of ELL, we expect
that the differences between our prediction and the experi-
mental results will inform us of which additional cell types
must be added to our model to minimize any error in com-
parison with experimental results. However, this model does
give an estimate of the encoding of objects as spike patterns
across the surface of ELL.

2.2 The ELL as an adaptive filter for complex
electrosensory stimuli

Assuming that the MG and efferent cells of ELL are tuned
to a baseline of activity (Roberts et al. 2006a), the STDP
learning rule will drive the system back to equilibrium after
a prolonged exposure to a particular object. Thus, the sys-
tem adapts to amplify novel electrosensory patterns (Bell
1989) and learns to ignore sensory images that do not change.
This early stage of electrosensory processing is not “enco-
ding” object features, but rather preparing the sensory image
for more precise feature extraction further downstream. The
example shown in Fig. 3b reveals object features that are
modified by ELL processing. The lateral inhibitory nature
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of the network amplifies the edges and sharpens the image.
Coupled with synaptic plasticity at the parallel fiber synapse
onto MG cells, the sharp image is predicted by the model to
fade as the electrical perturbation is maintained over many
cycles. Thus, novelty is both amplified and sharpened.

Amplification of novel objects could activate attention
mechanisms to engage the fish in more detailed object iden-
tification and localization tasks. Similar to a searchlight of
attention (Crick 1984) hypothesized for spatial sensory pro-
cessing, but activated from the bottom up. The localization
of the object requires further processing because only the
2-dimensional location is present in the activity patterns of
the ELL. Ambiguities of the distance must be resolved using
global information from the ELL’s activity pattern (von der
Emde et al. 1998).

Another essential function of ELL is to cancel the sensory
consequences of the fishes own movements. For instance,
the movement of the fish’s tail will cause the baseline elec-
tric field strength on the skin to change in a complex manner
(Caputi and Budelli 2006; Gomez et al. 2004). However, the
sensory consequences of the tail movement will be correla-
ted with proprioceptive information projected to the parallel
fibers of ELL (Bell et al. 1992). Such cancellation of move-
ment effects has been observed in other electroreceptive fish
(Bell et al. 1997a; Bastian 1996; Bodznick et al. 1992; Mont-
gomery and Bodznick 1994), and appears to be evident in the
mormyrid ELL (Sawtell and Williams 2008).

3 A cerebellum-like structure for auditory processing

The dorsal cochlear nucleus (DCN) is one of the two ini-
tial sites of auditory processing in the mammalian brains-
tem. Along with receiving primary auditory inputs, the DCN
receives additional ascending and descending auditory inputs
and inputs from non-auditory sources. This convergence of
information may be important for utilizing synaptic plasticity
to alter auditory responses to expected stimuli. Quantifying
neural responses to complex sounds in DCN can be compa-
red with mechanistic models of DCN cell types to determine
how DCN neurons respond to complex sounds. The effects
of plasticity on auditory responses will then be predicted by
our quantitative model to demonstrate how the DCN encodes
auditory objects. The integration of empirical studies with
mathematical modeling increases our understanding of how
the DCN functions as an adaptive filter during sound proces-
sing.

3.1 The DCN is a cerebellum-like structure

The DCN is the most complex of the cochlear nuclei, and has
been extensively studied both physiologically (Pfeiffer 1966;
Evans and Nelson 1973; Godfrey et al. 1975; Kaltenbach and
Saunders 1987; Young and Brownell 1976; Rhode and Smith

1986; Rhode and Kettner 1987) (see Young and Davis 2002
for review) and anatomically (Osen 1969; Rhode et al. 1983;
Wouterlood and Mugnaini 1984; Wouterlood et al. 1984;
Ryugo and Willard 1985; Smith and Rhode 1989; Berrebi
and Mugnaini 1991). In this paper, we address the function
of the DCN from the standpoint of its similarity to the cerebel-
lum and cerebellum-like structures. In particular, our hypo-
theses are driven by similarities between the DCN and the
cerebellum-like nuclei in fish (Bell et al. 1997a). In electric
fish ELL, an anti-Hebbian form of synaptic plasticity cancels
the expected features in sensory input (Bell 1981; Bell et al.
1997b; Roberts and Bell 2000). Similar synaptic plasticity
has recently been shown in the DCN of mouse suggesting
that similar adaptive mechanisms may exist in the two struc-
tures (Tzounopoulos et al. 2004). A major objective of this
study has been to determine whether adaptation is present in
DCN by examining adaptation of cartwheel cells in the DCN
of an awake, listening mouse.

The output neurons of DCN (fusiform and giant cells)
receive direct input from auditory nerve afferents and inputs
from parallel fibers (Fig. 4a). Parallel fibers originate in the
granule cell domain and synapse onto fusiform, cartwheel
and giant cells in the superficial layer of DCN. The gra-
nule cells and their parallel fiber axons convey information
from a wide range of auditory and non-auditory sources:
the auditory cortex (Weedman and Ryugo 1996), the infe-
rior colliculus (Caicedo and Herbert 1993; Schofield and
Cant 1999), the dorsal column nuclei (Li and Mizuno 1997),
the pontine nuclei (Ohlrogge et al. 2001), the trigeminal
nucleus (Li and Mizuno 1997; Shore et al. 2000; Haeng-
geli et al. 2005), unmyelinated auditory nerve fibers (Brown
et al. 1988), and the ventral cochlear nucleus (Golding et al.
1995). In addition, fusiform cells receive inhibitory input
from cartwheel cells whose cell bodies reside in the mole-
cular layer (Berrebi and Mugnaini 1991). Cartwheel cells
do not receive primary afferents but are excited by paral-
lel fibers, including fibers that carry auditory information
(Parham et al. 2000). We have used mathematical models to
develop the hypothesis that plasticity between parallel fibers
and cartwheel cells leads to the cancellation of expected audi-
tory patterns, and then tested that hypothesis using in vivo
recordings of cartwheel cells.

There is compelling evidence of synaptic plasticity
at several sites within the DCN (Fujino and Oertel 2003;
Tzounopoulos et al. 2004). For example, in vitro studies have
shown STDP in the mouse DCN that can strongly modify the
synapses from parallel fibers onto cartwheel cells and fusi-
form cells (Tzounopoulos et al. 2004), and the STDP learning
rules (Fig. 4b) have been well characterized. However, it is
difficult to determine the effect, if any, that synaptic plas-
ticity has on the information processing that takes place in
the auditory pathway. Insights regarding the functional signi-
ficance of this plasticity are best obtained through in vivo
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Fig. 4 Connectivity of DCN network model. Our model of fusiform cell
responses will extend previous research by combining our preliminary
fusiform model (Module 1) with a population of model cartwheel cells
(Module 2) (Portfors and Roberts 2007). Fusiform cells (P) are exci-
ted by the auditory nerve (AN) (Nelson and Carney 2004) and parallel
fibers, and they are inhibited by wide-band inhibitory interneurons (W)
and type II units (I2). The cartwheel cells will have response properties
derived from experimental recordings, and inhibit fusiform cells via
synaptic connections with glycinergic kinetics. In the extended model,

the model cartwheel cells will be excited by indirect auditory pathways
via parallel fibers (PF) and receive GABA-ergic synaptic inputs from
stellate cells (St) and glycinergic inputs from other cartwheel cells.
Cartwheel cells will be organized into isofrequency subpopulations
(depicted by layered boxes) that that are reciprocally connected and
converge onto similarly tuned fusiform cells. The extended model will
predict responses of fusiform cells to auditory stimuli of longer dura-
tion than we used to tune our preliminary model due to the long latency
responses of cartwheel cells

studies of mouse DCN where responses to natural auditory
stimuli can be examined. The STDP learning rules have been
formalized mathematically to predict how synaptic efficacy
changes for a wide variety of spike patterns (Roberts and
Bell 2002). The models that has been constructed incorpo-
rates our current understanding of STDP learning dynamics
and tests how these dynamics affect auditory processing in
the DCN. The objective of our model of cartwheel cell res-
ponses is to predict the effects of synaptic plasticity in DCN
on the processing of complex sounds.

The STDP learning rule at the parallel fiber synapse onto
cartwheel cells would cause a cancellation of expected sti-
muli if the parallel fibers carried timing information about
the stimuli (Roberts and Bell 2002, 2000). The STDP lear-
ning rule at the parallel fiber synapse onto fusiform cells
would lead to a linking of sensory events separated in time.
Temporal correlations would cause a strengthening of a weak
response to the stimulus if repeatedly paired with a second,
later stimulus that evoked a response (Roberts and Bell 2002;
Roberts 1999). However, because cartwheel cells inhibit fusi-
form cells (Fig. 4), the two types of learning rules interact
to modulate the output of DCN neurons, and the adapta-
tion of spectral–temporal responses of fusiform cells may be
quite complex. Therefore, we have developed a mechanis-
tic model to predict the responses of cartwheel and fusiform
cells to vocalizations; sounds that have complex frequency
and time structures. We then add a STDP learning rule into
our mathematical models to predict how response properties
of DCN output neurons changes after adaptation. We com-
pared the model’s predictions for adaptation of cartwheel
cells to simple tone pairs with empirical data. The results
have informed us about the mechanisms of adaptation to
more complex sounds as they operate in the awake, listening
animal.

3.2 The DCN as an adaptive filter for auditory stimuli

The function of the DCN as a filter for sound localization
cues has been discussed extensively in the literature (Davis
et al. 1996b; Ding et al. 1999; May 2000; Oertel and Young
2004; Reiss and Young 2005; Young et al. 1995; Young
and Davis 2002; Zheng and Voigt 2006). Spectral cues from
the head transfer function are thought to be combined in
DCN with proprioception information to determine the loca-
tion of a sound source. This filtering process is adaptive
because the shape of the pinna, or the coding of proprio-
ceptive information, could change through growth or injury.
Behavioral studies using animals with lesions to the DCN (or
output pathways) have suggested some role in sound localiza-
tion (Thompson and Masterton 1978; Jenkins and Masterton
1982; May 2000), and the behavioral deficits were largest for
orienting to the elevation of the stimulus. However, the lesion
studies may be difficult to interpret, particularly because the
DCN receives information from many parts of the brain.
The DCN will therefore act as an adaptive filter to expect
the auditory consequences of any sensory event (Oertel and
Young 2004), and use that expectation to modify signals in
the auditory pathway. Therefore, any sensory event that is
consistently correlated with an auditory stimulus (Oertel and
Young 2004; Shore 2005; Young and Davis 2002; Woody
et al. 1992) could be used to filter auditory information in
DCN.

In addition to filtering sound localization cues, the DCN
may also be involved in echo suppression (Kaltenbach et al.
1993; Wickesberg and Oertel 1990), vocal auditory suppres-
sion (Shore 2005), or enhancement of auditory processing
in the presence of background noise (Franosch et al. 2003;
Frisina et al. 1994). The responses of cells in DCN to auditory
stimuli have also been observed to change during classical
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Table 1 Response types of
neurons recorded in awake
mouse DCN

Response type Number Percent of Percent without Median first spike latency Mean threshold
recorded total units cartwheel cells (mean ±S.D.) ms (S.D.) dB SPL

II 14 18.2 25 8.3 (3.5) 29.6 (12.4)

I/III 4 5.2 7.1 11 (7.5) 26.6 (19.4)

III 29 37.6 51.8 11.5 (5.6) 25.9 (14.2)

IV 0 0 0 N/A N/A

Inhibited 9 11.7 16.1 32 (14.6)

Complex spiking 21 27.3 N/A 30.8 (14.3) 33.1 (11.1)

conditioning (Beroukha et al. 1998; Woody et al. 1992) using
an eye blink conditioning protocol. These conditioning
results suggest that DCN enhances responses to important
auditory objects leading to a better characterization and loca-
lization of objects in a noisy environment. The general func-
tion of the DCN may be to enhance behaviorally important
auditory objects for better identification and tracking in com-
plex auditory scenes.

4 Response properties of neurons in the DCN
of the awake mouse

The results presented here represent recent experimental
studies of the DCN. These results have provided a useful
theoretical framework to explain how plasticity and network
properties of the cartwheel cell layer affect the activity pat-
terns of DCN output neurons. In the course of our studies,
we have recorded 77 isolated single units in the DCN in
our awake mouse preparations, and found type II, III and
I/III response types, but no type IV responses, and found that
cartwheel cells in our awake mouse preparation respond well
to tones. Our mechanistic model of cartwheel cells explains
temporal firing patterns (Portfors and Roberts 2007), and
predicts adaptation due to spike timing-dependent plasticity
(STDP) (Roberts et al. 2006b). We found that the predicted
response from the model was similar to adaptation observed
in an isolated cartwheel cell recorded from awake mouse
DCN. We also found that cartwheel cells respond to mouse
vocalizations so that they may participate in the analysis of
complex sounds. In the following section, we will demons-
trate the results from a model we developed to quantify how
complex frequency interactions affect the responses of fusi-
form cells in DCN.

4.1 Frequency and temporal responses of DCN neurons
in awake mouse

The purpose of this study was to determine what response
types are in mouse DCN so that we can use these to identify
cell types. We have recorded 77 well-isolated single units

from the DCN of awake CBA/CaJ mice. Iontophoretic depo-
sits of dyes (dextran conjugated rhodamine (fluororuby) or
biotynilated dextran amine) confirmed that we can access
the DCN with our micropipette recording electrodes using a
dorsal approach through the cerebellum. Characteristic fre-
quencies of the units ranged from 6–32 kHz. We recorded 21
complex spiking units that we categorized as cartwheel cells
(Portfors and Roberts 2007), and 9 that we classified as “inhi-
bited”. All other units were classified into response types
based on the well described response map scheme (Evans
and Nelson 1973; Young and Brownell 1976; Young and
Voigt 1982; Young 1984; Shofner and Young 1985; Davis
et al. 1995, 1996a).

The majority of responses in awake mouse DCN were
type III (Table 1 ). Figure 5a, b shows frequency tuning of
a fusiform and a vertical cell. The top plots show response
maps at three intensities and the bottom plots show spectral-
temporal histograms. In this type of plot, both frequency and
temporal information are retained with time on the x-axis and
frequency of sound stimulation on the y-axis. Each row repre-
sents the post-stimulus time histogram (PSTH) for the cor-
responding frequency. The temporal firing patterns of awake
mouse DCN units were similar to those previously reported
(Rhode and Smith 1986). Of the 56 units that were not cartw-
heel cells, the majority (n=22; 28.6%) were choppers. These
results indicate that the awake mouse DCN lacks Type IV
responses but that other response properties are similar to
those observed in cat and gerbil.

The 21 cartwheel cells had distinct temporal firing patterns
compared to the 56 principal cells. Often the initial com-
plex spike was followed by a pause and then a simple spike.
This temporal firing pattern appears as a bimodal spike dis-
tribution in many cartwheel cells. Cartwheel cells also have
long and variable latencies compared to other unit types in
DCN. The mean (SD) latency of cartwheel cells was 30.8 ms
(14.2 ms) compared to values between 8.3 ms (3.5 ms) and
11.5 ms (5.6 ms) for other unit types (Table 1). This longer
latency corresponds well with cartwheel cells not receiving
direct, afferent input from the auditory nerve.

Previous studies of cartwheel cells have suggested that
cartwheel cells respond weakly to sound and often a best
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Fig. 5 Frequency tuning and Spectral-temporal histograms of identi-
fied units in awake mouse DCN. a Fusiform cell frequency tuning curve
at three intensities (top plot) and spectral-temporal histogram (bottom
panel). In spectral–temporal histograms, both frequency and temporal
information are retained with time on the x-axis and frequency of sound
stimulation on the y-axis. Each row represents the PSTH for the corres-
ponding frequency. b Vertical (type II, buildup) cell frequency tuning
curve at three intensities (top panel) and spectral–temporal histogram

(bottom panel). Cartwheel cell frequency response maps at three levels
of intensity (top panel). The frequency tuning of this cartwheel cell is
not easily distinguishable by the response map. Spectral–temporal his-
togram (bottom panel) with select PSTHs shown in detail (bin width =
7 ms). The unit shows an excitatory response to two separate frequency
regions (12 and 40 kHz) with inhibition between. This frequency tuning
for this cartwheel cell is only apparent in our spectral-temporal plot and
not in commonly used response maps

frequency cannot be determined (Parham and Kim 1995;
Parham et al. 2000). In contrast, we found that frequency
tuning of many cartwheel cells was fairly sharp, but often
complex so that response maps were not apparent when plot-
ted in the traditional manner (Fig. 5c, top plot). However, fre-
quency tuning of excitation and inhibition was much more
apparent in some units when we generated spectral–temporal
histograms (Fig. 5c, bottom plot). Preserving the tempo-
ral information in our spectral–temporal histograms allows
changes in spike rate to be more easily distinguished compa-
red to a standard response map. The spectral-temporal his-
togram in Fig. 5c, shows a long latency excitatory response
to at least two different frequencies (12 and 40 kHz), tuning
that was indistinguishable in the traditional response map.
The mean (SD) minimum threshold for cartwheel cells was
33 (11) dB SPL, only slightly higher than the DCN units that
receive direct input from auditory nerve afferents (Table 1).
In contrast, other studies have found that cartwheel cells did
not respond as strongly to tones, but agreed that the tradi-
tional tuning curves were complex enough to make the best
frequency difficult to resolve (Parham and Kim 1995; Parham
et al. 2000; Young and Davis 2002).

Since our results show that cartwheel cells in the awake
mouse DCN respond well to pure tones, we can use auditory
stimuli alone as an event that is consistently correlated with
another auditory stimulus to test our hypothesis that adapta-
tion to biologically relevant sounds occurs in the DCN. These
results improve our understanding of how the DCN functions
as an adaptive filter to aid animals in attending to impor-
tant features of auditory objects. In addition, by extending

our stimuli to include vocalizations, we can demonstrate that
neurons in DCN process complex sounds that are behavio-
rally relevant to the animal.

4.2 Cartwheel cells show selective responses to mouse
vocalizations

We have recorded and characterized the acoustic features
of vocalizations emitted by normal hearing mice under dif-
ferent social and environmental conditions. Mice emit at least
ten different types of vocalizations; half of which are fre-
quency modulations (whistles) and the other half of which
are complex with multiple frequency components and spe-
cific temporal features. The biological meaning of some of
these calls is known. For example, during courtship male
mice emit sequences of vocalizations that have been referred
to as song (Holy and Guo 2005), in part due to the frequency
and temporal structure of the vocalizations. In addition, pups
emit specific calls to release different types of maternal beha-
viors. By characterizing the acoustic features of over 2000
mouse calls, we have generated a set of stereotypical vocali-
zations that we have used as stimuli to encompass the majo-
rity of complex vocalizations emitted by our mice under our
social and environmental conditions. Figure 6 illustrates res-
ponses of a cartwheel cell in mouse DCN to a sample of our
mouse vocalization stimuli. This cell responded to two of
the 16 vocalizations we presented. These results show that
cartwheel cells respond to complex sounds such as mouse
vocalizations.
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Fig. 6 Cartwheel cells respond to natural mouse vocalizations. PSTHs
elicited from four mouse vocalizations show that the cartwheel cell
responded well to two of the calls. The inset in the PSTHs show the
vocalization spectograms. The time scale for the spectogram and the
PSTH in each plot is the same so that the spectograms shows the appro-
priate onset time and duration of the stimulus for the PSTH. Calls were
recorded using a 1/4-inch condenser microphone, digitized at 333,000
samples/s, and analyzed using custom-written software. Plots of fre-
quency versus time for all calls were obtained after fast Fourier trans-
formation

In a complex auditory scene, a conspecific vocalization is
a particularly important auditory object to localize. The fact
that selectivity to specific vocalizations are made at this early
level may be relevant to the function of DCN in forming a
spectral-temporal coding of auditory objects that could be
required for monaural sound localization (May 2000; Oertel
and Young 2004; Rogers and Butler 1992).

4.3 Model of temporal characteristics of cartwheel cells
in awake mouse DCN

Our purpose was to develop models of cartwheel cells that
would predict auditory responses of complex spiking neurons
recorded in the awake mouse (Portfors and Roberts 2007) in
order to identify parallel fiber synaptic inputs. Our aim was to
construct a more realistic cartwheel cell model than the spike
response model (Gerstner et al. 1993) used in our previous
studies of cerebellum-like structures (Roberts and Bell 2000).
The model helped us to tease apart the effects due to intrinsic
properties of cartwheel cells from the effects due to synaptic
input patterns (Portfors and Roberts 2007). We constructed
a 2-dimensional integrate-and-fire (2d-IF) model (Izhikevich
2003, 2006) that was based on the dynamics of the membrane
currents. We used a dynamical systems approach (Izhikevich
2006) to reduce the model of a cartwheel cell to 2 variables,
the membrane potential, v, and a slow “recovery” variable,
u. In this type of model, a fast spike is initiated when the
v-variable crosses a preset threshold, and the two variables
are reset.

Cartwheel cells have 2 types of spikes: simple spikes
and complex spikes. The complex spikes are driven by
a slow, Ca2+-based plateau (Manis et al. 1994; Zhang and

Oertel 1993; Kim and Trussell. 2007). Fast, sodium-
dependent spikes ride on top of the plateau potential (Golding
and Oertel 1997), and the complex spike burst is presumably
terminated by the activation of a calcium-dependent potas-
sium current (IAHP). Using a dynamical systems approach,
this type of burst mechanism leads to a fold/homoclinic bifur-
cation in Izhikevich’s topological classification (Izhikevich
2006). During a burst, each fast cycle around the unstable
focus (each spike) increments a slow, recovery variable that
eventually repolarizes the cell and terminates the burst. We
represented the bursting dynamics with a 2-state, resetting
(integrate-and-fire) model:

Cm v̇ = k(vr − v)(vt − v) − u + I (7)

u̇ = a(b(v − vr ) − u) (8)

If v ≥ vpeak , then v → c, and u → u + d. To simulate
cartwheel cell spiking dynamics, the parameters were set to
the following values: Cm = 50 pF, vr = −65 mV, vt =
−35 mV, k = 1, vpeak = 0 mV, a = 0.03, b = 10, c = −40,
d = 100, and the variables are initiated at equilibrium (v =
−65 mV and u = 0 nA) (Portfors and Roberts 2007).

Synaptic inputs to the 2d-IF models were represented
as postsynaptic currents, Is(t) = gs(t)(V (t) − Er ), where
Er is the reversal potential, and the synaptic conductance,
gs(t) = gmaxr(t), where r(t) represented the open proba-
bility of synaptic channels. We used a linear Markov model
for calculating r(t) with a single-variable (2-states, open and
closed) model for AMPA receptors, and r(t) was described
by the equation, ṙ = αT (1−r)−βr . The transmitter variable
T was reset T → Tmax only if there is a presynaptic spike,
otherwise, T = 0 (Tmax = 0.1 and Er = 0 mV).

A series of synaptic currents were injected into the model
cartwheel cell to represent parallel fiber activity that results
from auditory stimulation. The maximum synaptic current
was graded throughout the stimulus cycle to represent the
temporal pattern of synaptic currents. Thus, when we match
the complex and simple spike pattern with a cartwheel cell
recorded in vivo, we arrive at a prediction of the synaptic
currents that generated the spike pattern.

Simulated cartwheel cell spike patterns are shown in
Fig. 7b. The only difference between these two models was
the peak of the synaptic current. The model cartwheel cell
responded with long-latency complex spikes followed by
simple spikes. The spike patterns (Fig. 7b) are consistent
with our recordings of cartwheel cells in the awake mouse
(Fig. 7a). This modeling study suggests that cartwheel cell
spike patterns during auditory stimuli are due to synaptic
inputs, but the observed temporal relationship between com-
plex and simple spikes is due to membrane properties of
cartwheel cells. In addition, the model suggests that parallel
fibers carry delayed information about the frequency com-
position of sounds that generate responses in cartwheel cells.
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Fig. 7 Simulation of a 1-compartment, 2-dimensional, integrate-and-
fire cartwheel cell reveals mechanisms of spike pattern as recorded in
vivo. a Poststimulus time histograms show temporal firing patterns of
complex (CS) and simple spikes (SS) to 200 presentations of the cha-
racteristic frequency at 30 dB above threshold (bin width = 3ms). Red
(grey), open bars plot CS and black bars plot SS. Horizontal bars in
raster plots and PSTHs show onset and duration of the sound stimu-
lus. Characteristic frequency and threshold were 16 kHz and 25 dB SPL
for the unit in the left panel and 32 kHz and 25 dB SPL for the unit in

the right panel. CSs were differentiated from SSs based on interspike
interval time. Note the long latencies and variability in the timing of
the first spike latency in both units. b A series of excitatory postsynap-
tic currents (dotted blue) leads to early complex spikes (red) and late
simple spikes (black). Repeated presentations of the synaptic current
leads to spiking pattern that resembles auditory responses of cartwheel
cells in vivo. Histogram shows a dominance of complex spikes early in
the cycle depends on the peak of the series of synaptic inputs

These delays can now be implemented in our model of adap-
tive learning in cartwheel cells that results from STDP.

4.4 Adaptive model of cartwheel response to auditory
stimuli

Synaptic plasticity in cartwheel cells is dependent on the time
between the parallel fiber spike and the postsynaptic spike
(Tzounopoulos et al. 2004). Previous mathematical modeling
of anti-Hebbian STDP has established a globally stable fixed
point in the learning dynamics (Roberts et al. 2006a). The
STDP learning rule for the synapse from PFs onto cartwheel
cells is anti-Hebbian, and we simulated how cartwheel cell
responses to a tone changes as a result of pairing one tone
with a different tone (Roberts et al. 2006b). The simulation
motivated an experimental test that supported the expectation
of the simulation. We then tested and confirmed the model-
driven hypothesis that pairing two sounds induces cartwheel
cells to change their response to each individual sound such
that the response to one sound cancels the effect of adding
the second sound (Fig. 8).

Our simulation consisted of two components: a granule
cell network, and a cartwheel cell. The granule cell net-
work distributed an auditory stimulus via a recurrent net-
work onto the model cartwheel cell (Roberts 2004, 2005).
The model cartwheel cell implemented a STDP learning rule
at the parallel fiber inputs that was consistent with recent
empirical data (Tzounopoulos et al. 2004) (Fig. 4b). A spike-
response model was used to represent the cartwheel cell, and
two types of spikes were generated representing simple and
complex spikes. As with our previous studies in the elec-
trosensory lateral line lobe (Roberts and Bell 2000; Roberts
2000; Roberts and Bell 2002; Roberts 2005; Williams et al.

2003; Roberts et al. 2006a), the anti-Hebbian STDP learning
rule drove the output rate of the cartwheel cell to a fixed point
determined by the parameters of the learning rule.

The model was initialized with parallel fiber synaptic
weights at their maximum and then allowed to approach
their equilibrium value for stimulus-1 (cycle time: 0–150 ms).
Then, the second set of mossy fibers were activated to
represent stimulus-2 (cycle time: 50–150 ms). The increased
cartwheel cell spike rate (Fig. 8a) depressed all the active
parallel fiber synaptic weights. When stimulus-2 was termi-
nated, the spike response to stimulus-1 was reduced below
the values prior to the pairing with stimulus-2 for the cycle-
interval following the onset of stimulus-2. Thus, the model
predicted that the pairing of two stimuli reduces the response
to the first stimulus for the interval following the onset of the
second stimulus.

4.5 Observed adaptation of cartwheel cell responses
to auditory stimuli confirms the model’s prediction

We tested our model’s prediction in our awake mouse pre-
paration by recording the spiking activity of cartwheel cells
during the pairing of two different tones. Stimulus-1 was not
the best frequency, but would act as a reference to activate a
population of granule cells. Stimulus-2 was a best frequency
tone that evoked a strong excitatory response (Fig. 8b). After
repeated pairing of the 2 stimuli for about 5 mins (1,000
presentations at 3 per sec) the spike response to stimulus-2
was reduced, in particular, the simple spikes were signifi-
cantly reduced (Fig. 8c, Appendix for description of KS-test).
After stimulus-2 was terminated, the simple spike response
to stimulus-1 was significantly reduced during the period
following the expected onset of stimulus-2. Thus, we have
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Fig. 8 Cartwheel cell’s response to a tone changes following pairing
with a second tone: model versus experiment. a Simulated adaptation of
a model cartwheel cell that receives parallel fiber input from a granule
cell network, and the STDP learning rule from (Tzounopoulos et al.
2004) (Fig. 4b). b Extracellular spike recordings of a cartwheel cell in
an awake mouse support the prediction (bin width = 2 ms). Complex

spikes in red (grey) and simple spikes in black. c KS-test for adaptation
of the complex and simple spikes (data from B, 500 repetitions) shows
that the complex spikes (top panel) do not adapt when comparing the
time-rescaled PSTHs for before (solid) and after (dotted) the pairing
(significance level: α = 0.1), but there is significant adaptation in the
simple spikes (bottom panel)

empirically confirmed our model-driven hypothesis that the
pairing of two tones reduces the response of cartwheel cells
to individual tones.

4.6 Model of frequency response of fusiform cells

The purpose of this study was to develop a network model
of the DCN based on spectral models of type III/IV cells
(Blum and Reed 1998; Hancock and Voigt 1999; Reiss and
Young 2005). The resultant model predicts the responses of
fusiform cells to vocalizations from which we can infer the
system level effects of synaptic plasticity. In the initial phase
of the model, we chose synaptic connections that minimized
the difference between the model prediction and data from
extracellular recordings in the awake mouse. The remaining
differences were then identified and suggest mechanisms that
would improve the agreement between the model and expe-
rimental results.

The network consisted of three neuronal types: fusiform
(fusiform) cells (P), type-II inhibitory interneurons (I2), and
wide-band inhibitory interneurons shown in Fig. 9a. The fre-
quency responses of the network were driven by a model
on the auditory nerve (AN) responses. The AN model was
based on a modified version of Carney’s AN model (Carney
1993; Zhang et al. 2001; Nelson and Carney 2004) where
we shifted the frequency range and response properties to
mimic AN responses in the mouse (Taberner and Liberman
2005). In our simulation, the AN filter bank responded to
the stimulus with 10 fibers each tuned through the range of
1–30 kHz.

A narrow-band synaptic connection from the AN model
to the fusiform cell (P) was represented as an alpha-function
convolved with the spike probability of each AN fiber to
represent an excitatory postsynaptic potential (EPSP), and
a bell-shaped frequency distribution. The model network
implemented 10 wide-band inhibitory interneurons (W) by a
delayed (disynaptic) inhibitory postsynaptic potential (IPSP)
convolved with the AN spike probability. Ten type II (I2) neu-
rons received excitation from the AN and inhibition from W
(Blum and Reed 1998; Hancock and Voigt 1999; Reiss and
Young 2005). All 21 neurons received a bell-shaped distri-
bution of synaptic inputs from the AN, and P received bell-
shaped distributed inputs from I2 and W across the tonotopy
induced by the AN model.

The response of the model was modified by adjusting the
strength and the band-width of the synaptic connections by
an exhaustive search strategy to minimize the difference bet-
ween the spectral–temporal histograms of the P-cell (Fig. 9b)
and the experimental recording (Fig. 9c).

Following model optimization, we performed a statisti-
cal test to determine if the spike response, simulated by the
model, significantly differed from the recorded PSTH. To
compare the shape of the data and model PSTHs, we used a
Kolmogorov–Smirnov (KS) test (see Appendix). The errors
in the model suggest mechanisms involved in the processing
of auditory information in DCN. By comparing the spectral–
temporal histograms in Fig. 9b and c, the model errors include
three prominent features: (1) Inhibitory sidebands should be
more prominent at the higher stimulus intensity level (42 dB
SPL). (2) There should be a rhythmic spike rate near the
best frequency that is at a much lower frequency than the
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Fig. 9 Our network model of fusiform cell responses reveals missing
mechanisms when compared with our experimental results. a The net-
work contained an auditory nerve (AN) model modified from (Nelson
and Carney 2004). The model fusiform cell (P) received synaptic input
from the AN, an array of 10 wide-band, inhibitory interneurons (W),
and an array of 10 type II units (I2). The type II units received inhibi-
tion from W and inhibited P (Blum and Reed 1998; Hancock and Voigt
1999; Reiss and Young 2005). b The model results for a set of pure-tone
stimulations at 10 frequencies 1–30 kHz, and for two amplitudes (22–
42 dB SPL). The spectral–temporal PSTHs show a sharp AN-like onset,

lateral inhibition, and a reduction in the spontaneous rate following the
stimulus due to forward masking in the auditory nerve response. Bot-
tom panel shows overlay of the simulation and data PSTHs for 20 kHz
at 22 dB SPL. c Data from single unit recording in DCN of an awake
mouse that were used to tune the model. The long-lasting inhibition
that follows the evoked response may be due to cartwheel cell inhi-
bitory inputs. d Kolmogorov–Smirnov (KS) test of the time-rescaled
cumulative spike probability functions for the data and the simulation
(20 kHz, 22 dB SPL). The test rejects the simulation as the null hypo-
thesis with p > 0.1

stimulus. (3) The spontaneous activity should be inhibited
before the stimulus presentation near the best frequency.

These identified errors in the model’s predictions suggest
mechanisms that could lead to a better agreement by exten-
ding the model with (1) more realistic spiking mechanism in
our model of W, (2) more realistic membrane properties for
F to generate oscillations (Golding and Oertel 1997; Ding
et al. 1999; Manis et al. 1994; Kanold and Manis 2001), and
(3) include cartwheel cells in the network to induce late inhi-
bition of P. The value if this approach is that the model can
be used to develop new experimental protocols that would
specifically probe the hypotheses generated by each stage of
modeling.

5 Design principles of the ELL and DCN

The anatomical similarities of these two cerebellum-like
structure lead to functional principles of their design. This
review of these structures suggests to the following design
principles:

1. Each contains a set of sensory relay units (LG and LF
cells in ELL and fusiform cells in DCN) that represent
characteristics of the objects in each sensory modality
by the unit’s position: somatotopy in ELL and tonotopy
in DCN.

2. The sensory relay units receive a large number of tempo-
rally distributed inputs (parallel fibers) to provide both
timing information and “context” information.

3. The sensory relay units also receive an inhibitory input
from neurons that decorrelate repeated associations with
parallel fiber information.

4. Synaptic learning rules at the parallel fiber synapses
appear to be tailored to the types of objects that will
be processed by each sensory modality.

The cerebellum-like structures do not themselves encode
object location, but process sensory information so that
objects particular to the sensor modality can be readily identi-
fied and classified. The type of processing that appears to take
place in these examples appears to be to amplify important
and defining characteristics of external objects and reduce
redundancies and noise in the sensory environment.

6 Functional consequences of the differences between
the designs of the ELL and DCN

The adaptive properties of Purkinje-like neurons in the DCN
are strikingly similar to Purkinje-like neurons in the ELL. As
in the ELL, DCN-neurons reduce their response to a sensory
pattern suggesting that a similar biological principle may be
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at work. However, since different types of objects are proces-
sed by the DCN neurons, one would expect a different type
of adaptation system. The salient question that arises is: what
do the differences in structure and physiology between ELL
and DCN imply for the differences in how sensory objects
are analyzed?

Three key differences between ELL and DCN guide us
to a parsimonious explanation: (1) The lack of a corollary
discharge in the auditory system to notify the DCN of when
an externally generated sound begins. (2) There are no direct
auditory nerve input to the Purkinje-like neurons in the DCN.
(3) The efferent neurons of DCN have a different STDP lear-
ning rule.

The first difference suggests that adaptation to externally
generated sounds during passive listening by the animal pre-
clude the possibility of centrally originating signals such as
a corollary discharge. Thus, the auditory stimulus itself must
generate the timing signals.

The effects of the second difference between ELL and
DCN are seen in Fig. 9b, c. In the ELL, the MG cells regulate
the output of the system on an immediate basis, thereby can-
celling predictable signals with a very short latency. In DCN,
the effects of cartwheel cells on the efferent cells are slow and
late. The likely cartwheel cell influence on fusiform cells is
not fast enough to affect the response to a single, short sound.
The function, therefore, must regulate a stream of auditory
stimulation in order to modify the spectral predictability of
a temporal scene. The result may be to dampen background
noise that contains a predictable frequency structure.

The third difference between ELL and DCN, that the
efferent cells have a different STDP learning rule, cannot
be underestimated. Although the efferent cells in ELL have
been demonstrated to express some STDP learning at the
parallel fiber input (Han et al. 2000), this plasticity is weak
compared to MG cells and it is anti-Hebbian like the MG
cells. The STDP learning rule at the parallel fiber synapse
onto fusiform cells in DCN is Hebbian and increases tempo-
ral correlations between different inputs. Rather than ampli-
fying novel inputs, the fusiform cell will group frequencies
that consistently appear together, ie. amplify the frequency
structure of familiar auditory objects.

In the ELL, the edges of objects can be accentuated by late-
ral inhibition because the electrical shadow cast by objects in
the environment always have a clear, spatial structure. Howe-
ver, auditory objects do not have such an a priori structure, but
must be learned to be recognized. Recent evidence suggests
that the DCN can act as an auditory edge detector (Reiss and
Young 2005). The Hebbian STDP learning rule has the dyna-
mics that could lead to temporal edge amplification within
each frequency band. Thus, the types of objects that each
cerebellum-like structure is designed to analyze has directed
the design principles that that have been expressed in their
functional circuits.
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Appendix: Time-rescaled Kolmogorov–Smirnov (KS) test

Interpreting the PSTH as a spike probability function could
lead to false conclusions because the PSTH is not a norma-
lized probability density. However, we can apply the time-
rescaling theorem (Brown et al. 2002) to convert the spike
latencies of any point process to a Poisson process of unit rate.
The transformation of the recorded PSTH then becomes our
standard to compare with the simulated PSTH.

To apply the KS-test, we time-rescaled the experimental
spike latencies, ti to latencies of a Poisson process, τi , using
the transformation, τi = ∫ ti

0 f (t)dt , where f (t) is the instan-
taneous probability of a spike at time t . We used the experi-
mental PSTH divided by the number of trials to estimate the
function f (t). The resulting histogram of transformed laten-
cies will be constant, and the cumulative functions is the
solid line shown in Fig. 9d. We then time-rescaled the laten-
cies of the simulated spike responses, using the experimental
PSTH, so that the rescaling will show the difference between
the simulation and experiment. We applied the two-sided
KS-test in the fusiform model (Fig. 9d), with the KS-statistic,
max |CDFexpr(τ ) − CDFsimul(τ )| = 0.21, where the func-
tions CDFexpr(τ ) and CDFsimul(τ ) are the cumulative histo-
grams of the transformed latencies shown in Fig. 9d. We had
25 samples in the experimental data, so we compute p > 0.1,
which is greater than an acceptable level of significance. We
therefore reject the model as a quantitative hypothesis.
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