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Abstract An explanatory model is developed to show how
synaptic learning mechanisms modeled through spike-timing
dependent plasticity (STDP) can result in long-term adap-
tations consistent with reinforcement learning models. In
particular, the reinforcement learning model known as tem-
poral difference (TD) learning has been used to model neu-
ronal behavior in the orbitofrontal cortex (OFC) and ventral
tegmental area (VTA) of macaque monkey during reinfor-
cement learning. While some research has observed, empi-
rically, a connection between STDP and TD, there has not
been an explanatory model directly connecting TD to STDP.
Through analysis of the learning dynamics that results from
a general form of a STDP learning rule, the connection bet-
ween STDP and TD is explained. We further demonstrate that
a STDP learning rule drives the spike probability of a reward
predicting neuronal population to a stable equilibrium. The
equilibrium solution has an increasing slope where the steep-
ness of the slope predicts the probability of the reward, similar
to the results from electrophysiological recordings sugges-
ting a different slope that predicts the value of the anticipa-
ted reward of Montague and Berns [Neuron 36(2):265–284,
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2002]. This connection begins to shed light into more recent
data gathered from VTA and OFC which are not well mode-
led by TD. We suggest that STDP provides the underlying
mechanism for explaining reinforcement learning and other
higher level perceptual and cognitive function.
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1 Introduction

The theory of reinforcement learning states that behavior
followed by reward leads to greater likelihood of that same
behavior occurring again (Sutton and Barto 1998). Thus, any
mechanism that implements reinforcement learning, whe-
ther biological or mechanical, must have the capability to
predict future reward. The learning aspect of reinforcement
learning refers to the ability to associate a present state with
a reward which will be received later. This basic principle
drove the development of the temporal difference (TD) lear-
ning algorithm (Sutton and Barto 1998) which has become
a crucial element in many computational models of reinfor-
cement learning. However, the biological implementation of
TD, in terms of biological circuitry and learning mechanisms,
is as yet unresolved (Wörgötter and Porr 2005). We present a
biological model of reinforcement learning that is more parsi-
monious than previous models and relies on known synaptic
learning rules.

Recently, significant progress has been made in connecting
theories of reinforcement learning to observed adaptation of
neuronal processing. In particular, the activity of dopami-
nergic (DA) cells in the ventral tegmental area (VTA) and
Substantia Nigra pars compacta (SNc) of macaque monkey
during conditioning protocols seems to correspond strongly
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to a model of reward prediction. Specifically, Schultz et al.
(1997) have proposed that the response patterns of DA cells
reflect a process of learning to predict future reward through
the TD learning algorithm. The correspondence between the
model of TD learning algorithm and recordings from DA
cells in macaque is quite extraordinary, leading to the impli-
cation that the macaque uses the TD algorithm to predict
future reward. The experimental results by Schultz et al.
(1997) provide a foundation for understanding reinforce-
ment learning that links the neuronal level with the behavio-
ral level. Indeed, the TD algorithm also models behavior as
well as the DA neuron responses of macaque, although some
debate has arisen over recordings from DA cells
in macaque during conditioning protocols where the rewar-
ding event occurs probabilistically (Daw and Dayan 2004;
Niv et al. 2005; Morris et al. 2006). The present project
explores a new explanatory model of these DA responses
which relies directly on spike timing dependent plasticity
(STDP) and finds that the TD algorithm is a derivative result.

1.1 Temporal derivatives in the DA system

Previous applications of the TD model to the DA system of
macaque have relied on a physiological interpretation which
has caused some confusion. The TD model is well named
since algorithmically it depends on the differences in neuro-
nal behavior between two time steps. Montague et al. (1996)
posit the existence of neurons which are able to calculate a
temporal derivative (neuron D in Fig. 1a), although no known
neuron or neuronal mechanism is proposed. To see this we
return to the basic definition of the model as proposed in
the article by Schultz et al. (1997) and its supporting model
framework (Montague et al. 1996).

The TD model of the DA system relies upon a serial stimu-
lus representation (SSR), ie. an internal representation of a
stimulus which is “played back” repeatedly for a finite num-
ber of intervals. A stimulus arrives into the system and is
represented by the spiking of neurons at time xi (t) during
stimulus cycle t . Through a series of delays a set of neurons
output a spike at fixed intervals after the first spike, where
the spike-time of the i th delayed neurons is denoted as xi (t).
Due to the presence of many cumulative delays in the ner-
vous system, the existence of such SSRs through delay lines
seems biologically plausible.

The model of Montague et al. (1996) posits that the set
of spikes, at times xi (t), arrive as input to a neuron causing
changes in its membrane potential, V , and whose output is the
temporal derivative of its membrane potential, V̇ . Figure 1a
diagrammatically shows the convergence of the SSR onto a
single neuron D. Each element of the SSR is modified by a
weight wi which models the strength of synaptic communi-
cation of input xi onto D. The output of neuron D, (V̇ ), can
be roughly approximated by the quantity V (t − 1) − V (t).

Thus it is claimed (Montague et al. 1996; Schultz et al. 1997)
that the output of the neuron is the TD V̇ ≈ V (t)− V (t −1).
This TD signal becomes the fundamental driving term for the
adjustments of the weights onto D, wi . The model describes
how the inputs to neuron D drive its membrane potential
and how the TD output of D drives synaptic weight change.
The model correctly predicts the output of the system (Schultz
et al. 1997), but here we stop to critique this mechanism, in
particular its existence as a mechanism separate from neurons
in VTA.

Neuron D is not supported by any direct evidence, and
is meant to denote an intermediate region between cortical
projections and dopamine neurons in the midbrain
(Montague et al. 1996). In the case presented in Schultz et al.
(1997), the idea of an “intermediate region” has been repla-
ced with the statement that the model poses the hypothesis
that such a neuron or mechanism exists. The justification for
positing its existence is due to the nature of the recordings
taken from VTA whose output could be explained consis-
tently with the TD algorithm if they received inputs propor-
tional to V̇ . Moreover, the adaptation of the output of these
VTA neurons seems also to be driven by the term V̇ . Since
physically, changes in neuron activity are associated with
changes in synaptic efficacy, the researchers naturally posit
that the V̇ signal must be driving the changes in synaptic
efficacy somewhere upstream of VTA. Thus, D plays the cri-
tical role of calculating V̇ by some unknown mechanism. We
show in the following that the function of D can be explai-
ned by physiologically realistic synaptic mechanisms with a
simple neural model.

1.2 Reinforcement learning and STDP

We propose that the functionality represented by neuron D
is actually a STDP mechanism within the neurons of the
cortex, the striatum or the VTA (C in Fig. 1b). The TD algo-
rithm can be seen as a discrete approximation of differential
Hebbian learning. Early work in computational learning
models (Klopf 1998; Kosko 1986) showed that differential
Hebbian learning could implement basic classical conditio-
ning. In these models, changes in synaptic efficacy are pro-
portional to the time derivative of the membrane voltage,
V̇ (t). Since V̇ (t) can be approximated discretely as the dif-
ference of the membrane voltage at two time points V (t)
− V (t − k), the operative component of TD, many resear-
chers have noted this connection between differential Heb-
bian learning and TD (for a review, see Wörgötter and Porr
2005). Another mechanism exists that is more akin to diffe-
rential Hebbian learning, seems more biologically plausible,
and is supported by currently available research. Specifically,
we will now discuss how STDP implements differentiable
Hebbian learning (Wörgötter and Porr 2005).

123



Biol Cybern (2008) 99:517–523 519

Fig. 1 a Model network proposed in Montague et al. (1996). The out-
put from VTA provides an error signal (δ) to instruct the input neurons
for reinforcement learning. b Proposed network leads to a prediction of
future rewards represented in the responses of neuron C based strictly

on STDP. c Spike-timing dependent learning rule (Bi and Mu-Ming
1998; Feldman 2000) used in spiking simulations (solid black trace).
The learning rule decomposes into an antisymmetric part (dotted trace)
and a symmetric part (dashed trace)

STDP has been shown to implement differential Hebbian
learning (Roberts 1999). Several researchers have shown how
STDP can be modelled with TD (Rao and Sejnowski 2000)
and TD-like rules or differential Hebbian learning (Wörgöt-
ter and Porr 2005), but none of these researchers have shown
how STDP implements TD and TD-like rules (however, see
Izhikevich 2007 for a complementary approach). By treating
the fast time scale (activity during the stimulus cycle, x) inde-
pendently from the slow time scale (changes caused by plasti-
city, t), TD-like rules emerge from weight changes generated
by the anti-symmetric temporal learning rule (Fig. 1c) and are
related to differential Hebbian learning (Roberts 1999). Spe-
cifically, ∆w ≈ dV

dt = V̇ . We will now extend this relation
to find a solution for the spike probability of cortical, stria-
tal, or VTA neurons in anticipation of a reward following a
stimulus.

2 Methods and models

2.1 Model of spike timing dependent plasticity

We denote the spike probability of a neuron C in Fig. 1b as,
P(xm, tn), the spike probability function. We will assume
that this function takes values between 0 and 1, and is a
monotonically increasing sigmoidal function of the mem-
brane potential, V (xm, tn). We will give a specific example
in Sect. 3. The membrane potential is the sum of a the reward,
R(xm), and the SSR postsynaptic potentials, E(xm), scaled
by adaptive weights w(x p, tn),

V (xm, tn) = R(xm) +
∑

p

w(x p, tn)E(xm − x p). (1)

The reward is expressed here as a deterministic input to the
membrane potential, and is zero except for at the time of
a reward, xR , when R(xR) = 1. We will later generalize
this definition to include a probability of a reward, R(xR) =
PR ≤ 1. The weights change as functions of the timing diffe-
rence between pre- and postsynaptic spikes. Let Spost(xs) be

a collection of random variables, each of which is 1 if there
is a postsynaptic spike at time xs , and zero otherwise. The
weights change additively with the occurrence of postsynap-
tic spikes, ∆w(x p, tn) = ∑

s L(xs − x p)Spost(xs), where the
learning function, L(x), defines the amount and direction of
change for each spike pair. The average weight change is
then, 〈∆w(x p, tn)〉 = ∑

m L(xm − x p)P(xm, tn) (Roberts
1999). We will decompose the learning rule into antisymme-
tric and symmetric parts, L(xm) = L A(xm) + L B(xm).

We are now in the position to solve for the average change
in synaptic efficacy during each stimulus-reward cycle. In the
continuous limit, the spike probability function is expanded
in powers of z = xm − x to yield,

〈∆w(x, t)〉 =
∞∫

−∞
L(z)

[
P(x, t) + z

∂

∂x
P(x, t)

+ z2

2!
∂2

∂x2 P(x, t) + · · ·
]

dz

=
∑

k

Lk
∂k

∂xk
P(x, t), (2)

where the moments of the temporal learning rule are defined
by Lk = 1

k!
∫ ∞
−∞ zk L(z)dz. Using the decomposition of the

learning rule we get Lk = 1
k! (

∫
zk L A(z)dz + ∫

zk L B(z)dz),
and the integral limits are infinite. The first two terms of
the Taylor expansion (Eq. 2) yield: 〈∆w〉 = L0 P(x, t) +
L1 Px (x, t), where L0 =∫

L A(z)dz+∫
L B(z)dz and Px (x, t)

is the derivative of P(x, t) with respect to x . Since L A is
antisymmetric, the first term vanishes. We have chosen to let
L B < 0 for reasons of stability (Song et al. 1993) and follo-
wing the physiological evidence in Feldman (2000), leading
to L0 = ∫

L B(z)dz = −α. Similarly, L1 = ∫
zL A(z)dz = β,

so that

〈∆w〉 = −αP(x, t) + β Px (x, t). (3)

This expression provides a general form for synaptic weight
changes as a result of STDP with SSR. Note that the expres-
sion is independent of the specific form of the learning rule
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and only depends on the relative magnitude of the
spike-timing symmetric and anti-symmetric parts. Thus, the
learning dynamics could also apply to deformations of the
STDP learning rule caused by pairings of multiple spikes.

2.2 Simulation of learning dynamics

As a non-trivial confirmation of the conclusions that we draw
from Eq. 3, we constructed a numerical model of spiking
neurons with the STDP learning rule and circuitry shown
in Fig. 1b. The spike probability of the model neuron was
calculated from the membrane potential, V (xm, tn), the sum
of all inputs, was normalized to a maximum value of unity.
The spike-probability function was defined as P(xm, tn) =
(1+exp(−µ(V (xm, tn)−θ)))−1, where we let the threshold
θ = 30 and the noise parameter µ = 100 (Roberts and Bell
2000; Roberts 2004). During each time-step in (xm, tn), the
probability of a spike was calculated and a pseudo-random
number generator was used to determine whether to assign a
spike. At the beginning of each cycle in tn , the assigned spikes
were used to update the weights using the STDP learning
rule. The spike times of the model were binned for each time
step to generate histograms that represent the time average
of the spike probability. As a comparison, we simulated an
ensemble of 100 identical spiking models to calculate the
ensemble average of the spike probability.

3 Results

3.1 Approximate temporal difference learning

To recover TD learning, we approximate the probability of
postsynaptic spiking as proportional to the membrane vol-
tage, P(V ) = µV . If we let T = t + x , we get 〈∆w〉 ≈
−αµV (T ) + βµVx (T ), where Vx (T ) is the implicit deriva-
tive of V (T ) with respect to x . Using discrete approxima-
tion of Vx (T ), and rescaling our STDP learning parameters,
α̂ = µα and β̂ = µβ, we finally arrive at the TD-like for-
mula,

〈∆w〉 ≈ β̂(V (T ) − V (T − 1)) − α̂V (T )

= β̂(γ V (T ) − V (T − 1)), (4)

where γ = 1 − α̂/β̂ = 1 − α/β. In this last expression,
β̂ is interpreted as the learning rate and γ is the discount
factor of TD learning (Sutton and Barto 1998). Thus, our
average weight change, derived from STDP, can implement
TD learning. The learning rate depends on the noise parame-
ter because in a noisy system (small µ), there will be many
random jumps before the system converges, and learning will
be slow.

3.2 Continuum approximation

To obtain an analytic expression for the learning dynamics,
we investigate the continuum limit of the prediction of future
reward by linearizing the spike probability function,

wt = −α̂w ∗ E + β̂(w ∗ E)x , (5)

where E is the EPSP kernel. Here, w = w(x, t), and sub-
scripts denote partial derivatives so that wt = ∂w/∂t and
(w ∗ E)x = ∂(w ∗ E)/∂x , and the convolution is with res-
pect to the x variable.

The initial and boundary conditions are

(I.C.) w(x, 0) = ϕ(x), (6)

(B.C.) w(R, t) = PR, (7)

where R denotes the time at which the reward occurs and PR

is the amount of the reward represented by a constant value
of the weight at the time of reward. We have here replaced the
reward input (R(xm) in Eq. 1) by a probability of a reward,
and represented it as a fixed weight at time x = R. The
function ϕ represents an initial distribution of weights.

3.3 Stability of the weights

To analyze the stability of the weights under the differential
equation, we begin with a change in w to adjust the boundary
conditions. Define w̃(x, t) = w(x, t) − pe(x), so that pe(x)

is the equilibrium solution (such a solution exists as a genera-
lized function). The boundary conditions of the new function
w̃ satisfies w̃(R, t) = 0,∀t ≥ 0, and the initial condition is
transformed into w̃(x, 0) = ϕ̃(x) = ϕ(x)− pe(x). Substitu-
ting back into Eq. 5 we get: w̃t = β̂(w̃∗E)x −α̂(w̃∗E). Thus,
w̃ satisfies the same PDE but with zero boundary conditions.

We next look for solutions of the form w̃ = f (x)g(t),
where f and g are smooth and f is periodic of period R.
Then w̃t = f (x)g′(t) and (w̃ ∗ E)x = ( f ∗ E)′(x)g(t).
Substituting this form of w̃ into Eq. 5 and dividing both sides
by w̃ we may conclude that g(t) ∝ eλt , where λ is a constant,
and

β̂( f ∗ E)′(x) − α̂ f ∗ E(x) = λ f (x). (8)

We introduce operator notation and denote by E the convolu-
tion operator (E( f ) = f ∗ E), by Dx the derivative operator
(Dx ( f ) = f ′), and by I the identity (I( f ) = f ). Thus, f
must be an eigenfunction of (β̂Dx − α̂I)E . Such eigenfunc-
tions are of the form ei2πkx/R , for k any integer. Notice also
that

E(ei2πkx/R) = Ê(k)ei2πkx/R, (9)

where we define Ê(k) by
∫ R

0 E(y)e−i2πky/Rdy. We will refer

to Ê(k) as the kth Fourier coefficient of E . Substituting into
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Eq. 8 we obtain the possible values of λ: λ = (β̂ i2πk
R −

α̂)Ê(k).
We finally arrive at the solution to the weight configura-

tion that results from STDP. Allowing for superpositions of
functions of the form f (x)g(t) we get the general form for
w̃,

w̃(x, t) =
∑

k∈Z

Ãke(β̂ i2πk
R −α̂)Ê(k)t e

i2πk
R x . (10)

Convergence to the desired equilibrium as t → ∞ will occur
if λ = (β̂ i2πk

R − α̂)Ê(k) in the exponent has negative real
part.

To illustrate these estimates we restrict our analysis to the
special case of E(x) = e−σ x , with σ > 0. In this case, for
each integer k we have

Ê(k) = 1 − e−σ R

σ + 2πki
R

. (11)

The real part of λ is negative if and only if

k2 < γc
σ

( 2π
R

)2 , (12)

where γc = α̂/β̂ = α/β. Therefore convergence can be gua-
ranteed in this case if all the coefficients Ãk are zero, except
(possibly) those for which k satisfies (12). The coefficients
Ãk need to be determined from a Fourier series expansion of
the initial condition ϕ(x), thus convergence can be guaran-
teed if ϕ does not have high frequency components.

The membrane potential V can be recovered from the
weights w via the convolution formula V = w ∗ E . There-
fore, due to the continuity of the convolution operation, the
membrane potential also converges under the low frequency
conditions described above.

3.4 Numerical simulation of continuous model

We used the following discretization scheme to calculate
numerical solutions to the fully nonlinear equation

wt = −αP(x, t) + β Px (x, t), (13)

where P(x, t) = P(V (x, t)) as in Sect. 2.2. Both deriva-
tives wt and Px were replaced by their forward increment
quotients:

wt ≈ w(x, t + �) − w(x, t)

�
, (14)

Px (x, t) ≈ P(x + h, t) − P(x, t)

h
. (15)

Moreover, the value of V = w ∗ E is approximated by the
finite sum

∑N
j=0 w( jh, t)E(x − jh).

After substituting such approximations in (13) and rear-
ranging the terms we obtain the following recursions:

V (x, t) =
N∑

j=0

w( jh, t)E(x − jh), (16)

w(x, t + �) = w(x, t) − (βρ + α�)P(x, t)

+βρ P(x + h, t), (17)

where ρ = �/h. Results of the numerical simulation are
presented in Fig. 2a, b. A cross section of the solutions’ time-
evolution is presented in Fig. 2c.

3.5 Numerical simulations of the DA system

We can use Eq. 3 to predict the expected spike probability
of the output (C) neurons in Fig. 1b after an association has
been learned between a stimulus and a reward. When the
weights reach an equilibrium, 〈∆w〉 = 0, so that αP(x, t) =

Fig. 2 a Numerical solution of our PDE in the linear case predicts
the probability of a reward (PR) at x = 1.0 with α = 1 and β = 2.
There is a unique solution for the spike probability at any time prior to
the reward for a given reward probability. b Time course of the weight
change leading to equilibrium in the nonlinear case after starting with a
random weight configuration. The spike probability function has a thre-
shold, θ = 0.3 and noise, µ = 1. The t-step, h = 0.01, and the x-step,
l = 0.05, and there are 20 input neurons with 1,000 trials. The probabi-

lity of the reward is PR = 0.5. The edge that runs diagonally and borders
the smooth exponential is the leading edge of the wave moving towards
equilibrium. c The membrane potential in the nonlinear case approaches
equilibrium (black solid trace) following repeated trials (∆t = 0.01,
E(x) = exp(−x/τ), τ = 20). Shown in gray are various stages of
progression towards equilibrium as time slices. In contrast to the expo-
nential solutions of the linear case, the membrane potential is flattened
due to the spike probability function, P(V (x, t))
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Fig. 3 a Proposed network to explain phasic responses of dopamine
neurons (DA) to rewards. The DA neuron is excited by the C neuron that
predicts future reward and inhibited by an interneuron. b Post stimulus
spike histogram of C from a spiking neuron simulation of the network
in a with a reward at x = 0.7. The reward causes a strong response late
in the cycle (gray histogram, before), and the learning rule increases the
weights to generate a ramp that predicts the probability of the reward

(black histogram, after). c Post stimulus spike histogram for DA in the
same simulation as b. Before learning, DA is modulated only at the
reward (gray histogram, before), but following repeated presentation
of the reward, DA responds with a phasic pulse immediately following
the initial stimulus at time x = 0.0, and the response to the reward is
reduced

β P ′(x, t), with the solution,

f (w(x, t)) = A(t)eγcx . (18)

This exponential solution is consistent with the neurons recor-
ded in the striatum and the cortex (Suri and Schultz 2001;
Montague and Berns 2002; Tremblay and Schultz 1999).

The exponential prediction of future reward is also
consistent with our numerical simulation (Fig. 3), a simu-
lation that uses a single spiking neuron model and 200 input
neurons with synapses that change according to the above
STDP learning rule (Feldman 2000; Roberts 1999). We exten-
ded our spiking model to include a parsimonious description
of how dopaminergic neuron (DA) activity could be gene-
rated with a simple circuit. The reward determines the ini-
tial height of the prediction of reward (neuron C) given the
time until reward and the learning parameters. If the reward
is removed, then there would be a dip in the DA response
because, in our simple model, the DA response is monoto-
nically related to the sum of the reward input and the inhi-
bition. The response to the reward after training could be
further reduced by increasing the strength of the inhibitory
connection. Unlike the model of Montague et al. (1996), in
the model presented here, the DA neuron does not directly
instruct the learning in the TD sense, but follows the com-
bination of excitatory and inhibitory inputs. However, in
the biological system, DA responses may modulate the STDP
learning rule during phasic activity (Otani et al. 2003; Pawlak
and Kerr 2008).

In our simulation, a dip in DA activity follows the reward
response (Fig. 3c). This dip is caused by the inhibition out-
lasting the excitatory input from the direct reward pathway.
Although a dip is not apparent in Suri and Schultz (2001),
such lingering inhibition is visible in other published recor-
dings of DA neurons (Waelti et al. 2001). Our simple
representation of neurons that we used for our analytic results

could not take into account some of the more subtle biologi-
cal mechanisms that might modify the precise spike patterns.
For instance, if the inhibitory neurons project to the presy-
naptic terminal of the reward inputs onto the DA neurons,
then the reward response would be reduced without causing
the dip in response (Houk et al. 1995).

4 Discussion

Our results that the STDP leads to a stable spike probability
that anticipates future rewards leads to several predictions.
First, STDP with a learning rule found in cortical neurons
(Markram et al. 1997; Feldman 2000) could also be found in
VTA. In addition, plasticity in cortical neurons could drive
VTA activity to generate the prediction of future rewards
by the STDP learning rule that has already been characteri-
zed between pyramidal cells (Markram et al. 1997; Feldman
2000). The key element, in addition to the STDP learning
rule, is a series of inputs that arrive with a consistent time
delay following the initial cue.

The second prediction follows from recent recordings from
conditioning protocols with probabilistic reward that could
be parsimoniously explained by the STDP model. Because
the STDP learning dynamics change weights as a function of
the time-derivative of postsynaptic activity, the circuitry pre-
dicted by the model does not require specialized
time-derivative detecting neurons as has previously been sug-
gested (Schultz et al. 1997; Montague et al. 1996). The cir-
cuitry can generate both the striatal and dopamine responses
to reward prediction as shown in Fig. 3. The final output of
dopamine neurons is then a feed forward interaction of exci-
tation and inhibition. The recurrence of dopamine neurons
is not necessarily signaling a prediction error in the TD, but
can be used to gate the plasticity of inputs to allow learning
to occur when a reward is present.
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Finally, these results predict that any part of the brain that
has an STDP learning rule with an antisymmetric component
engages in forecasting the future. There is also a symmetric
component in our model that is necessary for the stability
of the learning dynamics. Because the dynamics presented
here are generic and not dependent on the specific parame-
ters of the learning rule, any similar STDP rule will lead to
prediction of future events if the timing information is avai-
lable. We have based these results on STDP involving the
pairing of only one presynaptic spike with one postsynaptic
spike. However, physiological spike trains seldom result in
only pairing of single pre- and postsynaptic spikes, but rather
spike patterns are paired with presumably nonlinear interac-
tions (Froemke and Dan 2002) not incorporated in our model.
We expect that our results will generalize to multiple spike
pairings whenever the average symmetric part of the learning
rule is negative and greater then the average antisymmetric
part of the learning rule because of the generality of the analy-
sis. Prediction is an essential function of the nervous system,
and this analysis suggests that the synaptic learning rules that
many synapses express are specifically tuned to generate pre-
dictions of future events.
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