PHYSICAL REVIEW E 70, 021916(2004)

Random walks for spike-timing-dependent plasticity
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Random walk methods are used to calculate the moments of negative image equilibrium distributions in
synaptic weight dynamics governed by spike-timing-dependent plasticity. The neural architecture of the model
is based on the electrosensory lateral line lobe of mormyrid electric fish, which forms a negative image of the
reafferent signal from the fish’s own electric discharge to optimize detection of sensory electric fields. Of
particular behavioral importance to the fish is the variance of the equilibrium postsynaptic potential in the
presence of noise, which is determined by the variance of the equilibrium weight distribution. Recurrence
relations are derived for the moments of the equilibrium weight distribution, for arbitrary postsynaptic potential
functions and arbitrary learning rules. For the case of homogeneous network parameters, explicit closed form
solutions are developed for the covariances of the synaptic weight and postsynaptic potential distributions.
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[. INTRODUCTION induced by the spike-timing-dependent learning rule. Condi-
tions for the existence and stability of such negative image
Spike-timing-dependent plasticit$ TDP) [1] is a form of  equilibria were first explored ifil5] and extended to arbi-

synaptic weight dynamics found experimentally in certaintrary spike-timing-dependent learning rules and arbitrary
neural systemf2—4]. The key feature of STDP is the depen- postsynaptic potential functions [d4].
dence of synaptic weight changes on the precise relative tim- However, the equilibrium weighdistributionin the pres-
ing of presynaptic and postsynaptic spikes; this timing deence of noise—and in particular, that distribution’s
pendence distinguishes STDP from earlier hypothesizedariance—is also behaviorally important, since fluctuations
forms of activity-dependent plasticifs—7] in which weight  in the weights due to noise lead to fluctuations in the nega-
changes depend only on correlations between presynaptitye image, which impacts the detectability of external ob-
and postsynaptic spike rates. Models of STDP assume thifcts. The methods of our previous artige4] were suffi-
the weight change due to each presynaptic and postsynapfi€nt to calculate the equilibrium mean, but not any higher
spike pair is given by some function of the time betweenmoments of the equilibrium weight distribution. This is a

them, called the spike-timing-dependet#aming rule serious limitation in the biological setting, for two reasons:

[8-13. Changes due to all pairs of presynaptic and postsynf_irst, because in principle the variance could be so large that

apc Spike pars re then summes 0 e ne weignchangfe [VS1A1ET 1E Tore PU=egealy ey on e
due to presynaptic and postsynaptic spike trains. important to be able to calculate it quantitatively in order to

[nh? q previous art|cle[t14], we h'.méeéfl'_%a;eﬁ thbaﬂea]{] make specific predictions about the impact of fluctuations on
weight dynamics in a system in whic as been Oun%Ietectability. In the present article, we derive implicit expres-

experimentally: the electrosensory lateral line laB&L), @ gjqng for all moments of the equilibrium weight distribution

cerebell_um_-like structure in m_ormyrid eleptric figh]. The d explicit expressions for the varian@nd the third and
mormynd fish uses an adaptation mechanism basgd on ST urth moments in the single-weight cager STDP learning
to habituate central neural responses to the predictable S€fliles with stable learning dynamics

sory input due solely to its own electric organ discharge Our approach is to express the weight dynamics as a dis-
(EOD). In order for the adaptation to predictable temporal, oo time  inhomogeneous random walk. From the master

patterns to be maintainable, the synaptic weight configurag,,ation of this walk we derive a differential equation for the
tion giving rise to a negative image of predictable pattemszq jer transform of the equilibrium weight distribution.

must be a stable equilibrium for the mean weight dynamicsp,y |6 expansion of this equation yields recurrence relations

for the moments.
The structure of the paper is as follows. In Sec. Il we

*Electronic address: williaal@ohsu.edu summarize the background facts about random walks, master
"Electronic address: tleen@cse.ogi.edu equations, and characteristic functions that will be used in
*Electronic address: robertpa@ohsu.edu the present paper. In Sec. lll we describe the architecture and
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dynamical assumptions of the model, and in Sec. IV we de-

rive the random walk for the weight dynamics for arbitrary Phi(w)dw= f dxpy(X)[Pp(W)dw'].
system parameters. In Sec. V we illustrate the method for

deriving recurrence relations for the moments of the equilibHence the master equation is

rium weight distribution by applying the method in the sim- dw
plest possible setting: the case of a single synaptic weight. - n W
We then in Sec. VI apply the method to the full architecture, Poa(W) _J AXpw ()Pr(W') dw
with arbitrary system parameters. In Sec. VII we specialize ) . _
to the case of homogeneous system parameters, derivin(T]dqe quantitydw’/dw compensates for any change in the
more explicit analytical results for the covariance of thedensity of states from time to timen+1, due to position
equilibrium weight and postsynaptic potential distributions.dePendence of the set of step values. Fromw’+j(x,w’)
Finally in Sec. VIIl we compute the weight and postsynapticVe have

potential covariances for several examples of biological in- dw' 1
terest and compare our predictions with Monte Carlo simu- T — (1
lations. In Sec. IX we summarize our findings, discuss their dw 1 +ij,(x)
biological relevance, and suggest future experiments to test aw'’
the quantitative predictions of the model. L
and hence the master equation is
, 1
Il. RANDOM WALKS, MASTER EQUATIONS, AND Prea(W) = | dXpys (X)Pp(W') ——. (2

CHARACTERISTIC FUNCTIONS 1+ —jwX
Jw

The termrandom walkrefers to any stochastic process in
which the state variables change only at discrete times. Theuppose the set of step values is independent of position;
changes in state variables are calktdps from any given thendjy (x)/ow’=0, and the density of states factor in the
position there is a set of possible steps, each having a certafiaster equation is identically 1. Denoting ) the com-
probability (or probability density. The set of possible steps mon set of step values, we also haveexplicitly in terms of
may be discrete or continuous, and both the step values ad and x: W' =w-j(x). For such walks the master equation

step probabilities may depend on position. takes the simpler form

Random walks have been used extensively to model other
physical systemgsee the bibliography if16]), and a large P (W :J dX oo ()P(W = 1(x)). 3
body of mathematical technique has been developed for their (W) Pari9 (X P(W = 1) @

analysis[17]. But they have not previously been applied to
STDP, where the standard approach has been to use t
Fokker-Planck equatio9,10,13. Given that the Fokker-
Planck equation is at best an approximatiamen applied to
discrete stochastic processgk3], whereas random walk
methods are exact, we believe it would be prudent to explor
the utility of random walk methods for the analysis of STDP. i
Random walks are natural models for systems having'@k in EG.(3),

| walks considered in the present paper will turn out to be
of this type.

A probability distributionP(w) is an equilibrium(station-
ary) distribution for the random walk ifP,=P implies
En+1=P; in other words, the dynamics of the walk leaves
unchanged. Hencde(w) is an equilibrium distribution for the
if and only if it satisfies

temporally discrete dynamics. Since the synaptic weight

changes in STDP are due to temporally discrete events P(w):de Pw-jx) (X P(W=j(x)). (4)
(spikes or spike paijsrandom walks are natural models for

STDP. To calculate the moments of a probability distributiBtw),

Suppose a state variableundergoes a random walk. Let \ye will find it useful to invoke a property of its Fourier

the possible steps from positiom be j,(x) for x in some  ansform(often referred to as theharacteristic functiof
index setX. Let the steg,,(x) occur with probability density

pu(X) in x. Let P,(w) be the probability distribution fow
after n steps. We wish to derive the equation of motion for
Pn(w), usually referred to as thmaster equation ] o _ )

If the state variable isv’ after n steps andv after n+1 Ta}kmg the de_rlvatlve with respect toin Eq. (5) and evalu-
steps, themv=w’ +j,,,(x) for somex. The probability for the ~ating atk=0 yields

P(k) = f dw dYP(w). (5)

state variable to be betwe@nandw+dw aftern+1 steps is na
therefore d"P(k) ( f dw(iw)neika(W))
dk" [0 k=0
"Moreover, the conditions under which the approximation is a . .
good one, especially for the nonlinear Fokker-PE\ack equation, are = 'nf dww'P(w) =i%w"). (6)
far from clear[18]. Further discussion of this issue, in the context of
STDP, will be the subject of a future paper. Hence the moments d?(w) are, up to powers of, just the
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presynaptic spike causes a constant change in the wejght
(nonassociative learningind each postsynaptic and presyn-
aptic spike pair causes a changewnaccording to a spike-
timing-dependent learning rule—i.e., a function of the time
difference between the postsynaptic and presynaptic spikes
(associative learning

Let the resulting periodpulse width be T, and introduce
two time variablesx e [0,T) for the time within each period
of the sensory input antenT, n e Z, for the time of initia-
tion of each such period20,21,26. General dynamical
quantities will be functions of the pafx,t). The time-locked
presynaptic cell spikes at a fixed time in each period. De-
note this time byx;. Let wi(x,t) be the synaptic weight of
presynaptic cell, and let&(s) be the PSP evoked by a spike
in cell i at times after the spike. We will assume thét is
causal£;(s)=0 for s<0. Letg; be the nonassociative weight
. . . change due to a presynaptic spike by delind £;(s) the

_FIG._ 1. Schematic of the aychntecture. The postsynaptic ce_II '®associative weight change due to a postsynaptic spike at time
ceives inputs fronN presynaptic neurons, a repeated sensory inpuk 4fter 5 presynaptic spike by céllLet ¢(x) be the periodic
d’(x.) ; and a noisy input. Presynaptic celpikes at time 'n.eaCh sensory input antl(x,t) the total postsynaptic potential due
period of ¢ and has synaptic weigl; onto the postsynaptic cell. to the non-noisy inputs.

. In contrast to our previous approagtd], we will assume

derivatives of the characteristic functid®(k) evaluated at that, in each period ofp, either zero or one postsynaptic

k=0. spike occurs. The probability density x, for a givent) for
For further background on random walks, $&@]. a postsynaptic spike to occur &x,t) is assumed to be
(1/T)f(U(x,t)) for some positive and strictly increasing
1. FRAMEWORK function f:R—[0,1]. The probability of zero postsynaptic

_ ) _ spikes in the period beginning at is then 1
_ The mo_del c0n3|s_ts of a single postsynaphc cell represe”t:(1/T)fgdxf(U(x,t)). Heuristically, the functiorf is the ef-
ing a medium gangllo(jMG) cell, a c_eII type in th? ELL that fective gain function of the postsynaptic cell in the presence
shows strong adaptation to changing sensory ifiBUtThe ot the noisy inputs, with the maximum slope bfndicating
MG cell is driven by a repeated sensory ingptimary Sen- o noise fevel: high or low noise corresponds tofanith
sory reafference an array of presynaptic cells whose spikesg i1 o; large maximum slope, respectively.
are time-locked to the repeated sensory infp efference We will implement changes in weights as discrete steps
copy of the motor commandand noisarepresenting other iy no internal time course. We update weights synchro-
unspecified inpuys[19-2] (Fig. 1). This basic architecture .,y once per sweep of the periodic sensory input, at time
is derived from the mormyrid ELL, but is sufficiently general , _ 5 o1 eacht=nT. ne 7. The value ofw: in the period

. ) 7. ,

to capture the dynamics of other neural systems hyporhbeginning at(0 1) is then independent of and will be de-

esized to have an array of time-delayed, time-locked inpUtﬁotedwi(t). In the present treatment, we impose no bound-

through plastic synaps¢82,23. aries on the weight values because the weight equilibria and

The framework for the neural dynamics is the spike re-_ “>. . . .
; . ~ equilibrium variances are such that weights are almost al-
sponse(SR) model [24,29, without refractoriness, as de ways in the region that would be enclosed by biological

scribed in our previous repoffi4]. Much of the details of bounds.

our MG cell model have appeared previougha, 2T, and To simplify the derivation of the weight dynamics, we
here we shall outline our general methods and comment on. P 9 ynar ’
) ; ) will assume that&(s),Li(s) are zero or negligible for
important differences between previous treatments and the . . . .
present framework. 18| > 7, 71, resp_ectlvely, withre, < T. We will also impose
The repeated sensory input is the postsynaptic potentietgr'e slow leaming rate assumption= s, wher_e_rw s the .
(PSP in the postsynaptic cell due to primary sensory affer- Ime scale over which weights undergo significant relative

ents, over a single EOD sweep. Each time-locked presynaﬁ-hange‘ The existence of approximate negative image states

tic cell i spikes(exactly once at a fixed time within each requires[14] that the spacing of presynaptic spike times be

sweep of the repeated sensory input, causing a corrspondirqn%mh srr|1aller than t_he W'dthsbéT and.z;: .‘5<dTE'TL' These
PSP in the postsynaptic cell. tifne-scale assumptions can be summarized as

The total membrane potential in the postsynaptic cell is
the sum of the repeated sensory input, the noisy input, and O<(mg,m) < T <7
the PSPs due to time-locked presynaptic spikes, weighted by
synaptic efficacieqweighty wi;. This membrane potential Typical values from the mormyrid ELL aré<1 ms[27],
causes the postsynaptic cell to generate postsynaptic, den-~20 ms [3], . ~40 ms [3], T~80 ms [[27] (b)], and
dritic spikes[3] at a certainnoisy) rate. We assume that each =~ 10°T [3].
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IV. WEIGHT DYNAMICS V. ONE WEIGHT

We now derive the random walk for the weight dynamics g jllustrate the technique in the simplest possible setting,
by computing the possible weight changls;(t)=w;(t+T) e first examine the case of a single weight. If there is only
—-w;(t) and their corresponding probabilities. The details hereyne weightw;(t), then without loss of generality we may

are very similar to those ifil4], deviating only in the treat- _ : . .
. i . . takex;= translatinge if n ry. Writingw(t
ment of postsynaptic spike generation. Instead of a varlablea eo 1=0 by tra Saa g¢ If necessary. (), a, L,

number of spikes per EOD cycle, occurring at a mean rat@"d€ for wi(t), a;, £, andéy, the random walk, Eq(9), for
per unit time, we now have a single postsynaptic spike pefhe weight dynamics becomes
cycle whose occurrence is given by a probability density.

The nonassociative changewq(t) due to the single
presynaptic spike atx;,t) is «;. For the associative change
due to presynaptic and postsynaptic spike pairs, the calcula- Aw(t) =
tion is identical to that in[14]; for a pair consisting of a
presynaptic spike dl;,t) and postsynaptic spike ét,t), the
change inw(t) is approximatelyzi(x—xi), where Zli(s)
=3__.Li(s—nT) is the periodization of; with periodT.

A postsynaptic spike betweenand t+T occurs with a  where
probability density(1/T)f(U(x,t)) in x, with tr}e probability
of zero postsynaptic spikes being @+T)[,dxf(U(x,1)). ~ o
Hence the change w; due to postsynaptic s(;))ikes betweden fOw(t) = f(p(x) + W E(X)) .

andt+T is £;(x) with density(1/T)f(U(x,t)) in x and 0 with From the random walk for the weight dynamics we derive
probability 1—(1/T)fgdxf(U(x,t)). The total change im;(t) the moments of the equilibrium weight distribution in three
due to both nonassociative and associative learning is thersteps. First we write the master equation for the time evolu-
fore tion of the probability distribution of the weight and the cor-
i responding functional equation for the equilibriustation-
a; + Li(x), densityf(U(x,t)), ary) distribution. Taking the Fourier transform yields a
T differential equation for the Fourier transform of the equilib-
a;, probability 1—(1f|')f dx f(U(x,t)). rium distribution. Taylor expansion of this equation yields
0 recurrence relations for the moments.
7) Notice that the set of step values in the wélk) is inde-
pendent ofw; hence the equilibrium distributioR(w) must
The calculation of the non-noisy component of the postsynsatisfy Eq.(4). From the step values and step probabilities in
aptic potentialU(x,t), is the same as ifiL4]; we find that Eg. (10) we have

a+L(x), densityLMTxw(t),
T

a, probability 1 —(1/T)f dx?(x,w(t)),
0

(10

Aw(t) =

N
U1 = d(X) + > W& (x=x), 8 17 ~
(x,t) ¢( ) ]gl ]() J( ]) (8) P(W):ll_?f de(X,W—a)]P(W—a)
0
where%i(s):E‘r’f:_xSi(s—nﬂ is the periodization of; with 1(7 -~ . .
period T. Defining T by ?(x,w(t)):f(d)(x)+2}\‘:le(t)8j(x)), + ?fo dxfO,w —[a+ LOYDPW - [a+ LX]).
we have from Eqs(7) and(8) the following expression for
the total change imv(t): (11)

Awi(t) Taking the Fourier transfornfidw € on both sides, chang-

@+ Ei(x), density 1/T)F(x,wy(t), ... Wn(D), ing variables, and rearranging yields

T
&, probability 1 ~(1/T) f AXFOWA(D), .. Wy (D). ) | T
o 1 N P(k)[l _e|ka] — _%_f dx[elk[a+L(X)] _ elka]

0

9)

Equation(9) defines the random walk for the weight dynam- X f dw €Y F(x,w)PW').  (12)

ics. It is discrete timgsteps occur only at=nT, neZ),

continuous spacesteps can take a continuum of valyesnd

inhomogenougstep probabilities depend on positjon A physiologically plausible spike output functioh would
The common periodicity of the functior&, £;, and¢ is  take the form of a smooth, monotonically increasing sig-

an important feature, allowing the systematic use of Fouriemoid, but for maximal simplicity we assunfeis piecewise

techniques. linear:
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-
0, u<-V-9,
i(1 u;a) -V-f<u<V-4¢
fluy=9 2T v /) S ’
1
) U>V_01
LT
(13)
so thatf is given by
(
0, U(x) <-V-8,
i(1+U(L_0) -V-60sUX)<V-40
Tx,w) =4 2T \Y; ' R B '
1
kT
(14)
with U(X) = ¢(x)— 9+W:€(x).

We further assume that the equilibrium weight distribu-
tion P(w) is zero or negligible fow such thatU(x) <-V
-0 or U(x)>V-0. This is aconfinement conditiomn the
equilibrium postsynaptic potentiél(x) and will be justified

PHYSICAL REVIEW E 70, 021916(2004)

For the expansion of the characterisitic functi%fk) we
expand the exponential in the definition Bfk) and invert
the order of summation and integration:

S ke

m!

m=0

P(k) = J dw éYP(w) = f dw W"P(w)

= im
= mzzo H(w’“)km.

From this it follows that
Tprk = 3& I wmieim= i 2 e,
I I o M! mo M!
By substituting these expansions into Efj5) and equating

coefficients ofk* on both sides, we obtain the following
relations:

"

>

m=0

(ﬁ )[yfi_m<wm> = V(W] =0,

later. Note that the confinement condition helps justify the

piecewise linear assumption dnsince the more “confined”
the postsynaptic potenti&l(x), the better our piecewise lin-

ear f approximates a smooth sigmoid in the region where yn

U(x) is concentrated. If the confinement condition holds,

then in Eqg.(12) we may replac&(x,w’) under the integral
by the following linear function ofw:

1( ¢(x)—:9+w%(x))
1+—mmm).
V

2T

Using fdw é“wP(w)=P’(k), we then obtain

T

= _ ika_}f 1( M)
P(k){l € 7, dx2 1+ v 7(X)
T
=i1|5'(k)T dX}Qn(X) (15

where n(x):eik[“w(x)]—eik“. By Eg. (6), the moments of
P(w) are (up to powers ofi) just the derivatives oP(k) at

k=0; since those derivatives are implicitly constrained by

Eq. (15), the moments oP(w) are constrained by Eq15).
Specifically, the Taylor expansion of E¢L5) aroundk=0
will yield a hierarchy of recurrence relations for the deriva-
tives of P(k) and hence for the moments Bfw). The Taylor
expansions of the exponentials are

gkl = 5 n—[a + LOOTR,

n=0

©nu=0,1,2 ..., (16)
where for brevity we have defined
1(7 1 -0 .
Snho—a"— _I—_fo dXE(l +%){[a+ L(X)]" = a"},

18(x)

d -—{[a+E(X)]“ '}

The relationg16) are lower triangule%rand hence are easily
rearranged to yield explicit recurrence relations for the mo-
ments in terms of moments of lower degree only:

P
Yu
W) == - —= > (W, m,
e M?ﬁ M71w§u::1< >¢M
n=12, ..., (17)
where
M M
lﬂy,m:(m)'yﬁ—m_(m_l)')ﬁ—ml-

We may now compute the central momerig=((w
— (W)X by expressingw") in terms of the{M}:

(W = (W= (w) +{(w))") = k% (E)Mk<W>n_k- (18)

Substituting into Eq(17) and rearranging yields

One could also derive moment equations via the more direct
route of Taylor expanding, iw, the equilibrium conditior(11) for
P(w), but the resulting moment equations are not triangular. In fact
they are fully coupledeach equation involving all moments, in
general and hence not readily solvable.
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2’1(>< = X1)
£(x) = : L LX) =

EnX=%p)

Li(x=x)

La(x=%y)

The random walk for the weight vectov(t) takes place in
R™, with the walk for each component;(t) given by Eq.

. 10). | ion th Ik f is th
For 4=2,3,4 weobtain (10). In vector notation the walk fow(t) is then

19 1944 a+ L(x), densitf1/T)f(xw(t)),

MZ:___+ 2’ A = T
295 204 W=y orobability ~(LT) J' axiocuy, 2D
Moo 17, 10095 198y, 1405 °
3TU30F 30902 20552 2 (453 where

T W) = Lo +w(t) - £()]

and the center dat) indicates the vector dot product.
Again, the step sizes are independent of position, so the
equilibrium condition, Eq(4), applies. We have

_308)° _3AAE 3ODOL 19 1Y
A2 2 (O 4 ODY 4 400
19895 19595 A%A 3405 340H°
207 2007 O 4 OB 4 OD*
(20)
We can see fronMj alone that in general the equilibrium

weight distribution is not Gaussian. For generic RSBnd
learning ruleL there are no polynomial relations among the

. . E ¢ . . . . i
coefficientsy, and y, henceMs is generically nonzero. As before, we take thénow n-dimensional Fourier trans-

To determine the dependence of the moments on step Sizgym on both sides. Applyinddw € changing variables
we multiply botha and £, and hence the steps of the random 4 rearranging yields ’ ’

walk, by a scalah. The coefficientsys and y? are then both

M, +

17 ~ 1" ~
P(w) = ll——f dxf(x,w—a)}P(w— a) + —J dxf(x,w
TJo TJo

~[a+LOODPW-[a+ L(X)]). (22)

O(\"), and substitution into Eq20) yields . , 1 (T .
PK[L-eX == dxp(x) [ dw ek f(x,w)PW'),
M,=0(\), TJo
(23
Mz=O(\?),
where

— a2 3 .

M4 - 3M2 + O()\ ) 77(X) - eik-[a+£(x)] _ e""“. (24)

Hence ash—0 the skew and kurtosis approach Gaussian

values: We now assume that the postsynaptic gain functiois
Mg piecewise linear and given by E@L3); hence,f is given by
(skew) = INEC O3 -0, Eq. (14), with U(X)=¢(X)— 6+w-E(X). And as before, we
2 assume thaP(w) is negligible forw such thatU(x) <-V
M -0 or U(x)>V-4, a confinement condition oR(w), which
(kurtosig = M_g =3+0(N\) — 3. will be justified later. Then we may replaE(%w’) under the
2 integral by the linear function of:
VI. MULTIPLE WEIGHTS 1 ( #(X) - 9+W.°g(x))
—| 1+ .
We now apply the technique to the case of multiple 2T \

weightsw;, i=1,2,... N. The algebra is more complicated, .
but the structure of the derivation is identical to the single-YSINg
weight case. For notational compactness we introduce the

vector notation f dw &% P(w) = } i(k)
wi(t) ay H ok
w(t)=| , a=| i |, we obtain the following first-order partial differential equa-
Wi(t) ay tion (PDE) for P(K):

021916-6
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~ . 1(7 1 -6
P(k)|:1—e'k'”‘—_|—_fo dX§<1+%> W(X)]

N 1aPM1 (T, 1E(x-x)
XN s e e

Taylor expansion of both sides of this equation arolsd
will yield recurrence relations for the moments wf The
Taylor expansion of a functiog on R" is given by

oy k=S E(& SN)

n=0 N!0
A y(zq, ... .Zn)
—(?2_”@; _ol_'[ kY.  (26)

The expansions of the complex exponentials in &%) are
thus

=33 (e

n=0 s

K-(a+L(x )_EE ( )]_I[[a+2(x)]|s‘]_|[k‘°*. (27)

n=0 s

where in the sums on the righi=(s;S,- - -Sy) " With eachs, a
nonnegative integer angly, s=n. For brevity we Write(g)
for the multinomial coefficient in Eq.26).

PHYSICAL REVIEW E 70, 021916(2004)

1P _g | () - uf W LT K-

[ &k m=0 r
(30

When the expansions, EqgR7), (28), and(30), are substi-
tuted into Eq(25), equating the coefficients dfki" on both
sides yields

1 ~ 1y 2... N\ — 1 m n
E(q)mﬂWg Wﬁ'>_r+zgqn! m!(r )(s)

X LYWW - W)

N
+ 2 9w Wi W],
=1

(31
where
1(7 .1 -0 ;
e R LRSS
+]] o,

1 18
%=1 f A= (X (H [+ L0T? - T o),
0 |

and g=(0;0,°--qy)", eachg; a non-negative integer, with
1 §i=u. A slight simplification follows fromyo—l and
y'é 0: the quantity on the left side of E¢B1) is canceled by

As before, for the expansion of the characteristic functiorthe term on the right side witk=0 andr=g. The resulting

I5(k) we expand the exponential in the definitionl?dk) and
invert the order of summation and integration:

ﬁ(k)zjdw r—ik""F’(W)_2 2 (r)

m=0 r

dew P(w)lliw{'}ﬂk” 22'—!( )

| m=0 r

><<Wr11Wr22‘”WF\1N>H K1, (28)
I

wherer=(ryr,---ry) " with eachr; a nonnegative integer and
SN, ri=m. From this expansion dP(k) it follows that

1p7P(k)
i dk

EE ( ) 1...WTNN>r]_1_|[k|r|‘5|j_ (29)
m=0 r m!

Using the combinatorial identity

i"”(m) jm1 ( m-1 )
h ro= ,
m| r J (m_l)l rl...r]__l...rN

we may reindex Eq(29) to yield

recurrence relations are

n
0= E n'm'( )(s)hf(wrllwrzzmwm
r+s=q
m</,/,

N
+ 2w Wi W],
j=1

N
O<g<=p 2q=mp=12.... (32

i=1
For each choice off we obtain a single linear equation in-
volving moments of total order at moat==; g;. Regarding
the moments of total order as unknowns to be solved for in
terms of moments of total order less thanpwe have a linear
system with the same number of equations as unknowns. The
coefficient matrix of this system involves the quantitigh
and 7F. For generic€ and £ there are no polynomial rela-
tions among these quantities; hence the determinant of the
coefficient matrix is generically nonzero, and the system can
be inverted to give the moments of total orgein terms of
¥?, +F, and the moments of total order less than The
complete moment hierarchy can thus be obtained: first mo-
ments of total order 1, then moments of total order 2, and so
on.
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A. Equilibrium mean B. Equilibrium variance
For u=1 we must havey;=g; for somei. Since in Eq. We now takeu=2 andqy= 6+ dj in Eq.(32). After some
(32) only terms withm< u appear, andn=%; r;, the only  simplification, usingC, d, (f), and(w) from above, we obtain
possibility forr is r=0, and thers;=q;= ;. The recurrence
relation Eq.(32) then becomes

T - o
0=a+= f dx1(1+¢’(x) e)ci(x-xi)
T), 2 Vv

N N

0=- kE Cidwiw;) = kE Ciwiwj) = (w;)d; = (w;)d;
=1 =1

1(7 o o
+?f dx(F)(x) X {[a; + Li(x = x)]La; + Lj(X = X;)]
0

LT 1 .
+J§-<W]>_|__Jo dXZ_\/SI'(X_Xj)Ei(X_Xi). (33) _aiaj}'

Allowing i to vary over all possible valuek,2,... N, we This can be rearranged to give

haveN linear equations in thal unknownsw;, which can be N N N
written in vector form as > Cirdwiw;) + 5 Cirlwiw) = (wi) 5 Ciidwi)
k=1 k=1 k=1
C(w)=d, (34 N N
1 o
with the matrixC and vectord given by — (W) > Ci(Wi) = 'I_'f dx(H (L + Li(x =X)L
k=1 0
11("7 o .
L — —— . —- ¥ . — X o 1
Ci 2VTJO &= X LX), (359 +Li(x=x)]} + {1 - ;J dX<f>(X)] ajaj =
0
1" 1 ¢(x)—6)o ~(Aw; A wy).
&= aiTjo dx2(1 * \ Lilx=x). (36) In vector form this becomes
The overall minus sign in the definition & is for later CUwwT) = (w)(w)T) + ((W?) = (W)w) )CT = (Aw A w').
convenience. For generi&and £ the matrixC is invertible, (39

and we havew)=C™1d. The physical meaning of this rela-

tion can be illuminated by rewriting E¢33) as follows: The covariance of a vector random variableis covu

=(wv"y—{v){v)". Equation(38) then takes the compact form

N o
1]T ( X)) -6+ E,'=1<""J’>51(X - Xi)> o C(covw) + (covw)CT = covA w, (39
0= Q; + = dax\ 1+ ‘Ci X
TJo \ where we have used the equilibrium mean conditiamw)
1 (T . =0 on the right side. Equatiof89) is a Lyapunov equation
-X) = o+ —f dx{FY(X) L;(x = x;), [28] for cov w, giving the equilibrium weight covariance in
0 terms ofC (which depends o0& and £) and coAw (which
where(1)(9 we define o be the value 869 whenw=(w. (AR TT 2 ST PO A ST B R
T H f -
Now add and subtraat;(1/T)[odX()(x) to obtain librium covariance cowv, if it exists, must satisfy Eq.39).
T T . A theorem of Ostrowski and Schneid@8,29 gives con-
0= {1 ——f dx<f>(x)}ai + —f dx{(H)X)[a; + Li(X= %) ] ditions for the existence and uniqueness of solutions to
0 0 Lyapunov equations. I§ is symmetric positive definite and
= (Aw,). (37) A and -A have no common eigenvalues, then the Lyapunov

equationAH+HAT=S has a unique solutioH. Furthermore,
We find that the equilibrium mean weight vectay) is that  H is symmetric and has the sarirertia (number of eigen-
for which the mean weight change is zero for all weights.values with positive, zero, or negative real pasA.
This condition is obvious on independent grounds and could Since coAw is necessarily symmetric positive definite,
have been used to calculat®) directly, without recourse to the theorem says that a symmetric solution woto Eq.(39)
the moment hierarchy relations. But for moments of totalexists uniquely provide@ and -C have no common eigen-
order 2 or higher, transparent conditions such as this are na@lues, and cow is positive definite if and only if all eigen-
available; in that case we have no choice but to solve Eqvalues ofC have positive real part.

(32). The condition thaC and -C have no common eigenval-
Given the equilibrium mean weights/), we can calculate ues is true for generi€ and hence for generi€ and L. The
the equ”ibrium mean postsynaptic potenﬂbﬂ)(x) via condition that cowv be pOSitive definite is needed in order to

interpret cowv as the covariance matrix of a probability dis-
(UY(X) = (x) + E(X) - (W) = B(x) + E(X) -C4d, tribution; we say cow is physicalif it is positive definite.
Denoting by)\ﬁ the nth eigenvalue ofC, we then have the
providedC is invertible. following physicality condition:
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(40)

A theorem of HeinZ28,3Q says that if all eigenvalues &
have positive real part and all eigenvalue®diave negative
real part, then thé€unique solution X to the equationAX
-XB=Y is given by

cov w physical= Rekﬁ >0 foralln.

o0

)

where the matrix exponentials are defined via Taylor expan
sions. The assumptions on the eigenvalue& ahdB ensure
that the integral in Eq41) converges, and one can show b
direct substitution that the resultingsatisfiesAX—-XB=Y. If
the physicality conditior{40) holds, thenC and -C' satisfy
the conditions forA and B, respectively, and we obtain

X ds €Sy B, (41)

Yy

o

COVW:J
0

This gives the equilibrium covariance matrix explicitly in
terms of system parameters.

Since the postsynaptic potentibl(x) is a deterministic
function of the synaptic weight vectev, the weight covari-

dsesS(covA w)e . (42)

PHYSICAL REVIEW E 70, 021916(2004)

For such parameters it will turn out that the mat@xthe
coefficient matrix in the Lyapunov equati@B9) for cov w,
has a special form: it isirculant[31]. The matrix coAw on
the right side of the Lyaponov equation for cawvis not
circulant in general, but it is circulant if the postsynaptic
spike probability densityf)(x) is independent ok. Now it
was shown in14] that in the case of homogeneous param-
eters, if the spacing between presynaptic spike times is
sufficiently small and provided certain other constraints hold,
the (mearn) equilibrium weight vector has the property that
the mean total postsynaptic potential)(x) is approximately
constant In that case the mean equilibrium postsynaptic
spike density(f)(x) is also approximately constant, and the
matrix covAw is approximately a circulant matrii. The
Lyapunov equation for cow is then approximately

C(covw) + (covw)C'=D, (45)
with solution given by
covwzf ds e5DesC, (46)
0

The eigenvalues and eigenvectors of circulant matrices are

ance cow determines the covariance of the postsynapticeasily calculated; furthermore, all circulant matrices can be

potential. FrorrU(x):¢(x)+Z‘(x)w, we have

coqU(x),U(y)) = £(x)Tcov wé(y)

for any pair of timesx,y in the interval[0,T]. Of particular
interest is the diagonal variance 0fx):

(43)

coM(U(x),U(X) = £(x) Tcov wE(X) . (44)

Our derivation of the equilibrium moment hierarchy equa-
tions relied on the equilibrium distribution dfi(x) being

negligible on the “tails” of the postsynaptic spike probability
function f. We will show in the next section, for the case of

homogeneous parameters, that the confinement condition on
U(x) can always be satisfied by adjusting the rates of asso-

ciative and nonassociative learning.

Note that for a spatially extended PSPEQ. (44) implies
that the diagonal variance &f(x) depends on the full matrix
covw; in other words, it depends not only on the diagonal
variances of the synaptic weightg, but also on the off-
diagonal correlations between different synaptic weights.

VII. MULTIPLE WEIGHTS, HOMOGENEOUS
PARAMETERS

For maximal generality in the foregoing analysis, we have
allowed the postsynaptic potential functions and spike-

timing-dependent learning rules to be different for different

presynaptic neurons and have allowed the presynaptic spike

de

times to be arbitrary. Further analytical progress can be ma
in the case where the system parameters are homogeneo

simultaneouslydiagonalized. Simultaneous diagonalization
of C, CT, andD in Eq. (46) will yield an explicit solution for
cov w in terms of the eigenvectors and eigenvalue€ @ind

D, which will themselves be written as explicit functions of
the system parameters.

Let &(s), L(s), and o denote the common postsynaptic
potential function, associative learning rule, and nonassocia-
tive learning rule, respectively. Let the spike time for presyn-
aptic celli be x;=(i-1)6, i=1,2,... N, 6=T/N. We then

have
Y o
Cij——z_\/$ . dXE(X—Xi)E(X—Xj), (47)
and for (f)(x) approximately the constan{f) we have
covAw=D, where

T
D = (1= (f)) + (f)_ll_f da+ L(x=x)][a+ L(X=X)].
0

By periodicity on, this can be simplified to
17 & o
Dij = a2+ 2<f>a’ﬁ+<f>?f dXE(X_Xi),C(X_X]'),
0
(48)
here 8=(1/T)[T dxZ(x).
A matrix A is circulant[31] if each row ofA equals the

w above it shifted one entry to the rigl@nd wrapped
agound at the edggsin other words,

w

i.e., the postsynaptic potential functions and spike-timing-

dependent learning rules are the same for all presynapti

neurons, and the presynaptic spike times are regularl
spaced.

C*The present model differs from the model [ib4] in having a
Wostsynaptic spike probability density instead of a mean postsynap-
tic spike rate, but the argument is unaffected.
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Aj+1mod N(+nmod n = Ayj  for all i, j.

We now show that botiC andD are circulant. First, leg(x)
andh(x) be any periodic functions of with periodT, and let
the{x;} be regularly spaced d®,T] as defined above. Lét
be the matrix defined by

T
Aij:J
0

Taking(i,j) to ((i+1)mod N, (j+1)modN) in Eq. (49) shifts
the argument of both functions bys;-and by periodicity this
does not change the value of the integral. Hence any matr
of the form(49) is circulant.

The constant matrica@ll of whose entries are the same

dx f(x = x)g(x—x;). (49)

are also circulant, and circulant matrices are closed under

PHYSICAL REVIEW E70, 021916(2004

N 1(T . .
)\E — <f>2 eiknxl—f dxC(x = X)L(X).
I=1 TJo

(53

Let A® and AP be the diagonal matrices with entri§ and
AR, and letR be the unitary matrix defined above with entries

Rj| = Ufl) = eiklxj .
ThenC=RA°R" and D=RAPR’". Transposition takes eigen-
values to their complex conjugates, €3=RA‘R". From

RR =1 and Taylor expansion it follows tha#*®=Re\ R’

and ¢ =R\ R'. Substitution into Eq(45) then yields a

idiagonalization of cowv:

covw= R[J ds e‘SACADe‘SAT] R =RA"R’,
0

addition, scalar multiplication, and transposition. Hence by

Eqgs.(47) and(48), C andD are both circulant and so GT.

It is easily shown [31] that the vectorsu™, n

=1,2,... N, with components
ul(n) = g2mill-DN.

k=1,2,... N,

are a complete set of eigenvectors for any circulant matrix
with corresponding eigenvalug, given by

(50)

N
)\n - E Aj|e211-i(j—l)n/N. (51)
=1

The expression on the right in E¢p1) is independent of

where AY is the diagonal matrix with entries

e
0

provided Re\$>0. SinceD is symmetric positive definite
(it is, by construction, a physical covariance majtriwe
have\_ real and positive for alh. Recall that in order for
the solution of the Lyapunov equatiqd5) to be positive
definite, all eigenvalues o must have positive real part—
ie., Re)\ﬁ>0 for all n. If this physicality condition is satis-
fied, then the eigenvalues of cawgiven by Eq.(54) are real
and positive. These eigenvalues, W)tﬁ and )\E given by

Ao

C 5 C
ds eS'm\De = —1—
2 Re\,;

(54)

because; and the complex exponential both depend onlyEgs.(52) and(53), are the variances associated with the in-

on (j—1) mod N. It is easily checked from Eq51) that
adding a constant matrifall entries the sameo a nonzero
circulant matrix has no effect on its eigenvalues.

Let R be the unitary matrix whoseth column is the vec-
tor u™, and letA be the diagonal matrix with entries,.
Then

A=RAR',

whereR’ is the complex conjugate transposefof

In the present context it will be convenient to define wav
numbersk, so that the argument of the complex exponentia
in Eqg. (50) is ik,x; this we can arrange by taking,
=27n/T,n=1,2,... N. From Eq.(51), the eigenvalues o
andD are then

AC= _i% eikn(xj_xl)lfT dXZ(X—X-)(z;(X_XO
n 2V|:1 T 0 :

N T
. 1 o o
)\E = (f)z elkn(Xj—X|)_|__J AXC(X = X)) L(X=X).
I=1 0

By periodicity of & and £ and regular spacing of thi},
these can be rewritten as

N
1 o
)\E =—=> e'knx'? (52

.
N fo dxC(x—x)E(x),

e

dependent components of the equilibrium weight distribu-
tion. The corresponding eigenvectors are tH with com-
ponentsu!™ =gk,

Since V>0, the condition for physicality of the covari-
ance is

N T
ReY, &= | dxC(x—x)E(X) < 0 for all n.

]
=1 T 0

This coincides with the condition derived [ifh4] for stability
Iof themeanweight state. Roughly speaking, it follows that if
there exists an equilibrium weight distributid®(w) (with
finite covariance matrix then the mean of the distribution
must be stable. We do not address the stability of the equi-
librium distribution (or, equivalently, the stability of all mo-
ments of the equilibrium distributionin the present paper,
but a natural conjecture would be that if the equilibrium
distribution P(w) exists, then it is necessarily stable.

From covw=RA"R" we can now write down explicit ex-
pressions for the equilibrium covariance of any pair of
weights:

N

> kbW,

n=1

N N
cov(w;,w) = > RinA Ry = > RinRo)p =
n,m=1 n=1

(55

with \¥ given by Eq.(54) and\S, \P given by Egs(52) and
(53).
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Note that cow;,w;) depends onj and| only via the  g;in particular, a range o exists for which(f) falls in the
difference(x;—x) mod T, due to periodicity and translational open interval(f(-V-6),f(V-#0)). Sincef is invertible for
invariance of the architecture for homogeneous parameterarguments in(-V-6,V-6) and(f)=f((U)), it follows that
Also, the covariance of the weights depends only on theyy appropriate choice 0B, (U) can be made to have any
a_lssociative part of the Iear_ning rule, s_im_:e the nona_s_socia-vame in(=V-6,V-#6). Since(f)(x) approximately constant
tive parta does not appear in E¢5). This is not surprising,  jmpjies(U) approximately constant, it follows that the mean

since the role ofx is (_essen'ually_ analagogs to that of a con- ostsynaptic potentiglU)(x) can always be made to lie be-
stant externally applied force in a physical system. Such .
ween the tails, for alk.

force changes the position of the equilibrium, but does no It remains to show that the diagonal variance

alter the dynamics around the equilibrium. cov(U(x),U(x)) can be made sufficiently small so that the
distribution of U(x) is negligible on the tails. We do this by
holding B fixed and varying\. Since the matrixC is propor-
Our derivation of the moment hierarchy relations, Egs.tional to X and the matrix coAw is proportional toa?, it
(32), relied on the assumption that the equilibrium weightfollows from Eq. (38) that covw—and hence coW from
distribution was negligible on the “tails” of the piecewise Eq.(48)—is proportional to\. In particular, coyU(x),U(x))
linear postsynaptic gain functioh This places a constraint can be made arbitrarily small by takingsufficiently small.
on the mearU)(x) and diagonal variance c@(x),U(x)) of Thus, by appropriate choice @ and\, the confinement
the postsynaptic potential: they must be such that the mean g9ndition can always be satisfied. The valugdadetermines
a large number of standard deviations away from the tailsthe location of the mean postsynaptic potential, and the value
For eachx, letr(x) be the standard deviation b(x) divided ~ of A determines the width of the distribution around the
by the distance fror{U)(x) to the nearest tail—i.e., t&/ mean. The latter fact—that the width of the equilibrium dis-
—6 or -V-6. The parameter(x) will be referred to as the tribution of the postsynaptic potential is proportional to the

confinement parametdor the system. The confinement con- overall learning rate—has direct behavioral relevance to the
dition holds provided(U)(x) is in the interval (<V—8,V mormyrid fish, since it implies a tradeoff between speed of
—6) andr(x)<1, for all x adaptation and accuracy of the adapted State.

We now argue that by adjusting only the rates of nonas-
sociative and associative learning, the confinement condition
can always be satisfied. Multiplying the associative learning ] ) )
rule by a positive scalar factg and both nonassociative and !N the architecture of the mormyrid ELL, the spacing
associative components by a positive scalar fastowe ~ Petween presynaptic spike times is much less than the widths

A. Confinement

B. Dense spacing limit

have weight changes given by e TL of the PSPc_‘ and Iearn_ing ruleZ. In _th(_e dense spacing
limit the set of discrete weights per unit tindes;/ 5} corre-

Na+ BZL(X),density(l/‘l‘)~f(x,w(t)), sponding to presynaptic spikes at tim{gg becomes a con-
Aw(t) = T tinuum weight densityyW(y), with weight W(y)dy corre-
Aa, probability 1_(1”)f dx f(x, w(t)). sponding to presynaptic spike times betweseand y+dy.
0 Sums ovel; are replaced by integrals overThe matrice<C

(56) anIdD inCEq[.) (45 bet?ome infinite dimensional, with eigen-
values\;, N\, given

The ratio of associative to nonassociative learning rate is n 9 i .
parametrized by3, while the overall learning rate is param- c__ 1 ik, P
etrized by\. Now it was shown in14] that in the case of A= 2VTJ, dy € yfo dXC(x = Y)Ex), (57)
homogeneous parameters, under certain mild conditions, the
equilibrium mean weight vector has the property that T T
(U)(x) is approximately constart.e., the equilibrium is an AD = _@f dy éknYJ de(x—y)Z(x), (58)
approximate negative image statelence(f) in Eq. (37) is TJo 0
approximately constant. If it were exactly constant, then quor n=0.1
(37) (for homogeneous parametgmould yield, after can- o
celling A on top and bottom,

.. Weintroduce some useful notation. L&} h]
be the sequence of Fourier coefficients for a functioan
[0,T1, given by F[h],=[{dy évh(y) with k,=27n/T, n
- =0,1,.... Let*; denote convolution on the intervgd,T],

H= (g*Th)(x)=fgdy ax=y)h(y). Let h denote the horizontal re-

a+$fdx2(x).

. ° . . . “The fact that the variance is proportional to the learning rate is
Provideda and [dx.(x) have opposite sigishown in[14] also true for inhomogeneous parameters, by the same argument. But

to be necessary for existence of a negative image equilibne confinement of the mean postsynaptic potertisix) is un-
rium) the right side of this equation can be made to have anyjear in that case, because the equilibrium is not necessarily an

desired value by appropriate choice ®F0. Hence(f) can  approximate negative image. Further work is required to character-
be made to have any desired value by appropriate choice afe the equilibrium for inhomogeneous parameters.
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flection of h,Fl(y):h(—y). Then Eqgs.(57) and (58) can be
written as

1 o T
)\S = - = F Ll

2VT
(f) o T
7\2 = ?]:T[C*T'C]n-

Now we invoke the Fourier convolution theoref{g*h]
=F[g]Fh] and the fact thatF{{g]=F+g], wherez de-
notes the complex conjugate af This gives

1 o )
NS = - — A L1 FHEL,

2VT 9
. ;
== r AL, 60

The eigenvalues of the weight covariance are therefore

FALIFAL],
Re Fo L1, FHE]]

D
)\W: )\n - _
" 2RexS

(61)
It follows that the covariance ofV(y) andWW(2) is

cov M), W(@)) = 2 &\ = - 2m(f)VFTH
n=0
Re[ F4[ L]F[£]]

where F7[h](x)=(1/27)2"_k*h, is the inverse Fourier

transform on[0,T]. The covariance of the postsynaptic po-

tential is then

T T
cov U(y,2) :f dxf dx' E(y — x)cov W(x,x")E(z—=X")
0 0

T T
=- 2w(f>Vf dxf dx’g’(y—x)z’(z—x’)
0 0

- FALIFAL]
Re A L]FH{E]]

(x=x). (63)

One special case is worth noting: suppose the PSP and learn-
ing rule have identical functional form—i.e., are proportional

to one another-£(x) =c&(x) for some(real) constant. Then
we have

1 FALIFA(L]
Re 7 L1F{E]]

x= FP{CI0 = -0,

PHYSICAL REVIEW E70, 021916(2004

PSP
E(z)

learning
rule

FIG. 2. PSP and learning rules used in the examples. Stability
requires 3-22< 7L/ TE<3+2y2. Stable examples are drawn with
solid lines; end points of the stable interval are drawn with dashed
lines. Arbitrary units.

covOV(y),W(2)) = - (F)Vcdly - 2).

In particular, the covariancéand hence the correlatiprof
WI(y) andW(z) is zero fory # z; hence weights correspond-
ing to different presynaptic spike times are statistically inde-
pendent. This is surprising, since the coupling of weights
through the PSE and learning rule. has some nonzero
“range,” given roughly by the widths & and £, and within

this range one would expect the weights to necessarily have
some nonzero correlation. The result just derived says that in
certain exceptional cases this correlation may vanish. The
result was derived in the dense spacing limit, but can be
expected to hold approximately for the physical case of dis-
crete spacing and also to hold approximately fonot quite
proportional to€; this will be verified in the examples cal-
culated below. Given that the best current experimental mea-
surement of the learning rule in the mormyrid E[3] is not
inconsistent with€ and £ having the same functional form,
this vanishing correlation phenomenon may have biological
relevance.

(64)

VIIl. EXAMPLES

We now compute the equilibrium weight covariances for
a class of PSP’s and learning rules consistent with those
measured in the mormyrid ELL, assuming homogeneous pa-
rameters. The PSP we take to be an excitatory alpha function
of width 7, and the learning rule we take to be alpha func-
tion, depressive, and pre-before-post, of width

E(x) = 72 EH(x), (65)

L(x) = - 7eH(x), (66)

whereH(x) is the Heaviside functiortd(x)=1 if x=0 and 0
otherwise(Fig. 2). In the above expressions bothand £

have been normalized to unit area, but to ensure confinement
of the postsynaptic potential, the learning ridlgand hence

where 8(x) is the Dirac delta function. For such a learning the size of the learning stepsnust be made sufficiently

rule the covariance of the weight density is

small so that the confinement condition is satisfied.
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near-neighbor correlation is positive in both cases. The mag-
nitude of off-diagonal correlation tends to increaserals:
moves away from 1 in either direction. Near the limits of the
stable range ofq / 7, the near-neighbor correlation is close
to 1 and the “antipodal” correlatioftorrelation with weights
a half period awayis close to —1. Such strong long-range
correlation and anticorrelation was also observed numeri-
cally in [15] in mean weight dynamics for parameters near
the boundary of the stable region, with breakdown of stabil-
ity being characterized by the appearance of traveling waves.
The correlation of the postsynaptic potential is shown in
Fig. 5. Forr /7= near 1 the correlation is everywhere posi-
tive. As 7 / 7= deviates from 1, the correlation decreases, and
long-range anticorrelations appear. Ags/ 7z deviates still
5800316 further, the anticorrelation decreases in range and increases
10 by 10 in magnitude, and a positive long-range correlation appears.
TL/TE For 7./ 7= near the limits of the stable range, the midrange
and long-rang&antipoda) correlations approach -1 and +1,
FIG. 3. Diagonal variance of weights, for alpha functighand  respectively, similar to the behavior of the synaptic weight
£ and for various values of / 7. The larger ofrand e was taken  correlation. The “scalloped” appearance of these curves for
to be 0.7 in all cases. Diagonal variance v/ 7g, log-log plot.  |arge 1, / 7 is due tor: being not much larger than the spac-
Dotted_llnes |nd|f:ate the bpundary of the stable interval, = ing 5=T/50 between presynaptic spike times, resulting in
=3+2y2. Dimensionless units. only marginal overlap of adjacent PSP’s. For fixed PSP
width 7z, such scalloping should vanish as the spacing of
It was shown in[14] that in order for the mean weight presynaptic spike times goes to zero. It is beliey2@db)]
dynamics to be stable near ttreegative imageequilibrium,  that in the mormyrid ELL the spacing of presynaptic spike
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the time constantsg and r,. must satisfy times is sufficiently dense that this scalloping would be in-
significant.
1 — Comparison with direct Monte Carlo simulation of the
3-2y2< p <3+2/2. random walk revealed excellent agreement with prediction,
E

provided confinement was well satisfied; results fof 7¢

For 7./ in this stable range, we calculated the equilib-=5.814, near the upper end of the stable range, are shown in
rium covariance of the synaptic weights and of the postsynFig. 6. As above, nonassociative and associative learning
aptic potential and verified our predictions by direct Monterates were adjusted so that the confinement paraméter
Carlo simulation of the underlying random walk. The num-was 0.2 for allx (i.e., the tails were five standard deviations
ber of presynaptic cells was taken tolde 50, and to ensure away from the equilibrium meanWeights were taken to be
that the confinement condition was well satisfied, the rates ofitially uncorrelated, with mean equal to the predicted mean
nonassociative and associative learning were adjusted so thaind variance equal to the predictetlagona) variance; the
the confinement parameter wei)=0.2 for all x (i.e., the initial correlation was then the discrete Dirac delta function.
tails were five standard deviations away from the meanfo quantify convergence we used the mean absolute value of
postsynaptic potentinlBy translational symmetry for homo- the relative discrepancy between the predicted and actual
geneous parameters, the diagonal variafieesv,) are inde- (ensemble megncorrelation. Translation invariance of the
pendent ofi, and the off-diagonal covariandav,,w;) de- correlation allowed us to reduce the size of fluctuations in
pends only or(x,—x))mod T. The covariance matrix is then the simulation estimate by averaging not just over the en-
Comp'ete'y described by the diagona| Variar((m Sing|e Semble but alSO over the pOp_ulatIO_nN)f— 50 WelghtS n eaCh
numbey and the correlation of weight; with the “midpoint” ~ member of the en;emb?eUsmg this measure, the correla-
weightwyy,, fori=1,2, ... N; the correlation in this case is tion in the simulation converged to within 1%—2% of the
just the covariance normalized by the diagonal variance. Theredicted correlation in approximately 1éme steps(Fig.
diagonal variance is shown in Fig. 3, and the correlation i)-
shown in Fig. 4, for various values of /7 between 3
-2y2 and 3+22. Note the approximate vanishing of off-
diagonal correlation for /7 near 1, as expected from the ~ Since changes in synaptic weights in STDP are due to
analytic calculation in the dense-spacing limit. The mannetemporally discrete eventspikes or spike paijsthe dynam-
in which the correlation deviates from an approximate delta
function as7 / 7¢ deviates from 1 also shows an interesting Sajthough the predicted correlation is translation invariant, the
pattern: forz /¢ slightly greater than 1, the near-diagonal fluctuations around the prediction are not necessarily uncorrelated.
(near-neighbor correlation is positive, while forr /7= For our purposes this is harmless; it simply means that we do not
slightly less than 1, the near-neighbor correlation is negativeobtain as large a reduction in fluctuation size by population averag-
But for 7 /7= substantially greater than or less than 1, theing as we would by using a 50-times larger ensemble.

IX. DISCUSSION
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FIG. 4. Correlation of weights, for alpha functiofisand £ and
for various values of / 7e. The larger ofr, and 7g was taken to be
0.2T in all cases. Curves are labeled by the value dfre, and for
clarity curves are not joined to the poif@.5,) which all curves
have in common(a) Correlation ofw; with wyy,, versusx;/T, for
7./ 7= significantly less than 1(b) Same for 7 /= significantly
greater than 1(c) Same forr /7= near 1, with expanded vertical
scale. Dimensionless units.

FIG. 5. Correlation of postsynaptic potential, for alpha functions
& and £ and for various values of_/ 7z. The larger ofr. and 7
was taken to be ORin all cases.(a) Correlation ofU(x) with
U(T/2), versusx/T, for 7/ 7¢ significantly less than Xb) Same for
7./ 7 significantly greater than Xc) Same forr /7= near 1, with
expanded vertical scale. Curves are labeled by the value/ot.
Dimensionless units.
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generically non-Gaussian, but the skew and kurtosis ap-
proach Gaussian values as the learning (aiee of stepp
goes to zero.

For the case of multiple weights we explicitly calculate
moments up to second order. The mean weight vector satis-
fies a simple matrix-vector equation, which is equivalent to
the condition that the mean step in the equilibrium state be
zero for all weights. The weight covariance matrix satisfies a
Lyapunov equation. An explicit solution to this equation, in
the form of a matrix integral, is obtained. For this solution to

J be the covariance matrix of some probability distribution it
020 4 \a J/ must be positive definite, which imposes a constraint on the
-osf e .o 1 PSP¢ and the associative learning rufe
150107 For the case of multiple weights with homogeneous
: ‘ parameters, further analytical progress can be made. The
4 - s s s - : s s s Lyapunov equation for the weight covariance matrix can be
0 0.1 0.2 03 04 0.5 06 07 08 0.9 1 - . . . .
(@) 2T fully dlagonallzed and the covariance of any pair of \(velghts

found in closed form. From this we also obtain explicit ex-

pressions for the covariance of the postsynaptic potential be-
tween any pair of times. The physicality condition—that the
weight covariance matrix be positive definite—takes an es-
pecially simple form in this case, closely related to the con-
dition derived in[14] for stability of the mean-weight state.

In the limit of dense spacing of presynaptic spike times,
the expression for the weight covariance is further simplified.
In the special case whe#and £ have the same functional
form, we find, surprisingly, that weights corresponding to
distinct presynaptic spike times are statistically independent.
This result can be expected to hold approximately for dis-
crete presynaptic spike times and for learning rules not quite
identical to& in functional form.

Numerical calculation of the equilibrium weight covari-
ance and postsynaptic potential covariance was carried out
for a class of examples relevant to the mormyrid ELL: both
£ and £ alpha function in form, with€ excitatory and.
depressive pre-before-post. For the synaptic weights, off-

FIG. 6. Convergence of weight correlation to predicted equilib-diagonal correlation is near zero fef/7=1 and tends to
rium values in Monte Carlo simulations, far E=5.81,N=50, con-  increase in magnitude ag/7z moves away from 1. Values
finement parameter =0.2a) Time evolution of population-averaged 0Of 7 /7= near the boundary of the stable range show large
correlation; curves labeled by timg/T. Dotted curve indicates pre- long-range anticorrelations. The correlation of the postsynap-
diction. (b) Relative discrepancy between predicted and actual cortic potential is everywhere positive faf / 7==1, but long-
relation, vs timet/T. Dimensionless units. range anticorrelations develop a9 7= moves away from 1.

These numerical predictions were found to be in excellent
ics of such plasticity, in the presence of noise, is naturallyagreement with direct Monte Carlo simulations of the under-
modeled as a discrete-time random walk. There is a largying random walk.
body of mathematical technique for the analysis of such pro- One of the basic results of this paper is that the variance
cessegl7]. of the equilibrium weight distribution is proportional to

From the weight dynamics expressed as a random wallearning rate(i.e., to the magnitude of the weight changes
one can write down a master equation for the time evolutioninduced by individual spikes or spike pairé slow learning
of the weight probability distribution. From the master equa-rate leads to a small variance in equilibrium weight distribu-
tion we obtain a functional equation for the equilibrium tion and hence a more accurate negative image; a fast learn-
weight distribution. Taking the Fourier transform of this ing rate gives a large variance in equilibrium weight distri-
equation yields a differential equation for the characteristidoution and a less accurate negative image. Detectability of
function of the equilibrium distribution, and Taylor expan- sensory objects is improved by a more accurate negative im-
sion then yields a hierarchy of recurrence relations for theage; thus to optimize detectability the learning rate should be
equilibrium moments. From the moments of the equilibriumslow. However, if the fish’'s own discharge is changidae
weight distribution we also obtain the moments of theto changes in water conductivity or body shape, for ex-
postsynaptic membrane potential. ample, then the negative image must be updated to remain

For the case of a single weight, we explicitly calculateaccurate. Such adaptability of the negative image favors a
moments up to fourth order. The distribution is shown to befast learning rate, to allow the negative image to keep up

corr(w, wN/z)
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o o
N w
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with changes in the discharge. The twin requirements of deeur quantitative predictions, further work must be done to
tectability and adaptability are thus in direct conflict: any onecharacterize other sources of variance in the MG cell mem-
choice of learning rate represents a compromise betweesrane potential, so that the contribution due to synaptic
them. A natural hypothesis is that the learning rate in theveight variance alone can be isolated. We hope the specific-
mormyrid ELL is the slowest learning rate sufficient to pro- jty and quantitative nature of our predictions are sufficient to
vide adaptability of the negative image on time scales ovemotivate such work.

which the fish’s discharge varies in the wild. A faster rate Although certain details of our model are drawn from a
would not significantly improve adaptability and would de- 4 ticylar biological system, we have sought in the present
grade detectability; a slower rate would unacceptably depaner 1o lay the groundwork for the rigorous mathematical
grade adaptability. analysis of equilibrium weight distributions arising from

e yelonca oag e ey aeantate e TOP i alher systems a well. The methods developed here
phy 9 9 ' q P in particular the random walk approach and the ability to

. . ! i
&%r;i gfirggf o‘t?)rseesr(\a/giio%ag?trheriqL:Jirl(iat?riljlrjrztcz:iaer\)((:%ecr:fn;, err]]t_al]alculate with arbitrary learning rules and arbitrary postsyn-
' q y ?ptic potential functions, are quite general and should be

aptic W‘?'.gh.ts IS prpbably hot feasible, bUt. measurement O%xtendable to systems other than the mormyrid ELL.
the equilibrium variance of the postsynaptic membrane po-
tential in MG cells is certainly feasible. Since sources other
than the equilibrium weight variance may also contribute to a
fluctuating membrane potential, such a measurement can
only provide an upper bound for the learning rate consistent We would like to thank Dr. Gerhard Magnus, Dr.
with our calculations. Nevertheless, if this upper bound weredNathaniel Sawtell, and the members of Dr. Curtis Bell's
too slow to be consistent with direct experimental measurelaboratory for insightful discussions. This material is based
ment of weight changes due to single spike p&ils then upon work supported by the National Science Foundation
our calculation would be inconsistent with experiment, andunder Grant No. IBN-0114558 and by the National Institute
the model would need to be modified. For a sharper test o6f Mental Health under Grant No. RO1-MH60364.
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