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Random walk methods are used to calculate the moments of negative image equilibrium distributions in
synaptic weight dynamics governed by spike-timing-dependent plasticity. The neural architecture of the model
is based on the electrosensory lateral line lobe of mormyrid electric fish, which forms a negative image of the
reafferent signal from the fish’s own electric discharge to optimize detection of sensory electric fields. Of
particular behavioral importance to the fish is the variance of the equilibrium postsynaptic potential in the
presence of noise, which is determined by the variance of the equilibrium weight distribution. Recurrence
relations are derived for the moments of the equilibrium weight distribution, for arbitrary postsynaptic potential
functions and arbitrary learning rules. For the case of homogeneous network parameters, explicit closed form
solutions are developed for the covariances of the synaptic weight and postsynaptic potential distributions.
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I. INTRODUCTION

Spike-timing-dependent plasticity(STDP) [1] is a form of
synaptic weight dynamics found experimentally in certain
neural systems[2–4]. The key feature of STDP is the depen-
dence of synaptic weight changes on the precise relative tim-
ing of presynaptic and postsynaptic spikes; this timing de-
pendence distinguishes STDP from earlier hypothesized
forms of activity-dependent plasticity[5–7] in which weight
changes depend only on correlations between presynaptic
and postsynaptic spike rates. Models of STDP assume that
the weight change due to each presynaptic and postsynaptic
spike pair is given by some function of the time between
them, called the spike-timing-dependentlearning rule
[8–13]. Changes due to all pairs of presynaptic and postsyn-
aptic spike pairs are then summed to give the weight change
due to presynaptic and postsynaptic spike trains.

In a previous article[14], we investigated themean
weight dynamics in a system in which STDP has been found
experimentally: the electrosensory lateral line lobe(ELL), a
cerebellum-like structure in mormyrid electric fish[3]. The
mormyrid fish uses an adaptation mechanism based on STDP
to habituate central neural responses to the predictable sen-
sory input due solely to its own electric organ discharge
(EOD). In order for the adaptation to predictable temporal
patterns to be maintainable, the synaptic weight configura-
tion giving rise to a negative image of predictable patterns
must be a stable equilibrium for the mean weight dynamics

induced by the spike-timing-dependent learning rule. Condi-
tions for the existence and stability of such negative image
equilibria were first explored in[15] and extended to arbi-
trary spike-timing-dependent learning rules and arbitrary
postsynaptic potential functions in[14].

However, the equilibrium weightdistribution in the pres-
ence of noise—and in particular, that distribution’s
variance—is also behaviorally important, since fluctuations
in the weights due to noise lead to fluctuations in the nega-
tive image, which impacts the detectability of external ob-
jects. The methods of our previous article[14] were suffi-
cient to calculate the equilibrium mean, but not any higher
moments of the equilibrium weight distribution. This is a
serious limitation in the biological setting, for two reasons:
first, because in principle the variance could be so large that
the fluctuations are more physiologically relevant than the
mean and, second, because even if the variance is small, it is
important to be able to calculate it quantitatively in order to
make specific predictions about the impact of fluctuations on
detectability. In the present article, we derive implicit expres-
sions for all moments of the equilibrium weight distribution
and explicit expressions for the variance(and the third and
fourth moments in the single-weight case) for STDP learning
rules with stable learning dynamics.

Our approach is to express the weight dynamics as a dis-
crete time, inhomogeneous random walk. From the master
equation of this walk we derive a differential equation for the
Fourier transform of the equilibrium weight distribution.
Taylor expansion of this equation yields recurrence relations
for the moments.

The structure of the paper is as follows. In Sec. II we
summarize the background facts about random walks, master
equations, and characteristic functions that will be used in
the present paper. In Sec. III we describe the architecture and
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dynamical assumptions of the model, and in Sec. IV we de-
rive the random walk for the weight dynamics for arbitrary
system parameters. In Sec. V we illustrate the method for
deriving recurrence relations for the moments of the equilib-
rium weight distribution by applying the method in the sim-
plest possible setting: the case of a single synaptic weight.
We then in Sec. VI apply the method to the full architecture,
with arbitrary system parameters. In Sec. VII we specialize
to the case of homogeneous system parameters, deriving
more explicit analytical results for the covariance of the
equilibrium weight and postsynaptic potential distributions.
Finally in Sec. VIII we compute the weight and postsynaptic
potential covariances for several examples of biological in-
terest and compare our predictions with Monte Carlo simu-
lations. In Sec. IX we summarize our findings, discuss their
biological relevance, and suggest future experiments to test
the quantitative predictions of the model.

II. RANDOM WALKS, MASTER EQUATIONS, AND
CHARACTERISTIC FUNCTIONS

The termrandom walkrefers to any stochastic process in
which the state variables change only at discrete times. The
changes in state variables are calledsteps; from any given
position there is a set of possible steps, each having a certain
probability (or probability density). The set of possible steps
may be discrete or continuous, and both the step values and
step probabilities may depend on position.

Random walks have been used extensively to model other
physical systems(see the bibliography in[16]), and a large
body of mathematical technique has been developed for their
analysis[17]. But they have not previously been applied to
STDP, where the standard approach has been to use the
Fokker-Planck equation[9,10,13]. Given that the Fokker-
Planck equation is at best an approximation1 when applied to
discrete stochastic processes[18], whereas random walk
methods are exact, we believe it would be prudent to explore
the utility of random walk methods for the analysis of STDP.

Random walks are natural models for systems having
temporally discrete dynamics. Since the synaptic weight
changes in STDP are due to temporally discrete events
(spikes or spike pairs), random walks are natural models for
STDP.

Suppose a state variablew undergoes a random walk. Let
the possible steps from positionw be jwsxd for x in some
index setX. Let the stepjwsxd occur with probability density
rwsxd in x. Let Pnswd be the probability distribution forw
after n steps. We wish to derive the equation of motion for
Pnswd, usually referred to as themaster equation.

If the state variable isw8 after n steps andw after n+1
steps, thenw=w8+ jw8

sxd for somex. The probability for the
state variable to be betweenw andw+dw after n+1 steps is
therefore

Pn+1swddw=E dxrwsxdfPnsw8ddw8g.

Hence the master equation is

Pn+1swd =E dxrw8sxdPnsw8d
dw8

dw
.

The quantitydw8 /dw compensates for any change in the
density of states from timen to time n+1, due to position
dependence of the set of step values. Fromw=w8+ jsx,w8d
we have

dw8

dw
=

1

1 +
]

] w8
jw8sxd

, s1d

and hence the master equation is

Pn+1swd =E dxrw8sxdPnsw8d
1

1 +
]

] w8
jw8sxd

. s2d

Suppose the set of step values is independent of position;
then ] jw8sxd /]w8=0, and the density of states factor in the
master equation is identically 1. Denoting byjsxd the com-
mon set of step values, we also havew8 explicitly in terms of
w and x: w8=w− jsxd. For such walks the master equation
takes the simpler form

Pn+1swd =E dx rw−jsxdsxdPn„w − jsxd…. s3d

All walks considered in the present paper will turn out to be
of this type.

A probability distributionPswd is an equilibrium(station-
ary) distribution for the random walk ifPn=P implies
Pn+1=P; in other words, the dynamics of the walk leavesP
unchanged. HencePswd is an equilibrium distribution for the
walk in Eq. (3), if and only if it satisfies

Pswd =E dx rw−jsxdsxdP„w − jsxd…. s4d

To calculate the moments of a probability distributionPswd,
we will find it useful to invoke a property of its Fourier
transform(often referred to as thecharacteristic function):

P̂skd =E dw eikwPswd. s5d

Taking the derivative with respect tok in Eq. (5) and evalu-
ating atk=0 yields

UdnP̂skd
dkn U

k=0
= USE dwsiwdneikwPswdDU

k=0

= inE dwwnPswd = inkwnl. s6d

Hence the moments ofPswd are, up to powers ofi, just the

1Moreover, the conditions under which the approximation is a
good one, especially for the nonlinear Fokker-Planck equation, are
far from clear[18]. Further discussion of this issue, in the context of
STDP, will be the subject of a future paper.
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derivatives of the characteristic functionP̂skd evaluated at
k=0.

For further background on random walks, see[17].

III. FRAMEWORK

The model consists of a single postsynaptic cell represent-
ing a medium ganglion(MG) cell, a cell type in the ELL that
shows strong adaptation to changing sensory input[3]. The
MG cell is driven by a repeated sensory input(primary sen-
sory reafference), an array of presynaptic cells whose spikes
are time-locked to the repeated sensory input(the efference
copy of the motor command), and noise(representing other
unspecified inputs) [19–21] (Fig. 1). This basic architecture
is derived from the mormyrid ELL, but is sufficiently general
to capture the dynamics of other neural systems hypoth-
esized to have an array of time-delayed, time-locked inputs
through plastic synapses[22,23].

The framework for the neural dynamics is the spike re-
sponse(SR) model [24,25], without refractoriness, as de-
scribed in our previous report[14]. Much of the details of
our MG cell model have appeared previously[14,21], and
here we shall outline our general methods and comment on
important differences between previous treatments and the
present framework.

The repeated sensory input is the postsynaptic potential
(PSP) in the postsynaptic cell due to primary sensory affer-
ents, over a single EOD sweep. Each time-locked presynap-
tic cell i spikes(exactly once) at a fixed time within each
sweep of the repeated sensory input, causing a corrsponding
PSP in the postsynaptic cell.

The total membrane potential in the postsynaptic cell is
the sum of the repeated sensory input, the noisy input, and
the PSPs due to time-locked presynaptic spikes, weighted by
synaptic efficacies(weights) wi. This membrane potential
causes the postsynaptic cell to generate postsynaptic, den-
dritic spikes[3] at a certain(noisy) rate. We assume that each

presynaptic spike causes a constant change in the weightwi
(nonassociative learning) and each postsynaptic and presyn-
aptic spike pair causes a change inwi according to a spike-
timing-dependent learning rule—i.e., a function of the time
difference between the postsynaptic and presynaptic spikes
(associative learning).

Let the resulting period(pulse width) beT, and introduce
two time variables:xP f0,Td for the time within each period
of the sensory input andt=nT, nPZ, for the time of initia-
tion of each such period[20,21,26]. General dynamical
quantities will be functions of the pairsx,td. The time-locked
presynaptic celli spikes at a fixed time in each period. De-
note this time byxi. Let wisx,td be the synaptic weight of
presynaptic celli, and letEissd be the PSP evoked by a spike
in cell i at times after the spike. We will assume thatEi is
causal:Eissd=0 for s,0. Letai be the nonassociative weight
change due to a presynaptic spike by celli and Lissd the
associative weight change due to a postsynaptic spike at time
s after a presynaptic spike by celli. Let fsxd be the periodic
sensory input andUsx,td the total postsynaptic potential due
to the non-noisy inputs.

In contrast to our previous approach[14], we will assume
that, in each period off, either zero or one postsynaptic
spike occurs. The probability density(in x, for a givent) for
a postsynaptic spike to occur atsx,td is assumed to be
(1/Tdf(Usx,td) for some positive and strictly increasing
function f :R→ f0,1g. The probability of zero postsynaptic
spikes in the period beginning att is then 1
−s1/Tde0

Tdxf(Usx,td). Heuristically, the functionf is the ef-
fective gain function of the postsynaptic cell in the presence
of the noisy inputs, with the maximum slope off indicating
the noise level: high or low noise corresponds to anf with
small or large maximum slope, respectively.

We will implement changes in weights as discrete steps
with no internal time course. We update weights synchro-
nously, once per sweep of the periodic sensory input, at time
x=0 for eacht=nT, nPZ. The value ofwi in the period
beginning ats0,td is then independent ofx and will be de-
notedwistd. In the present treatment, we impose no bound-
aries on the weight values because the weight equilibria and
equilibrium variances are such that weights are almost al-
ways in the region that would be enclosed by biological
bounds.

To simplify the derivation of the weight dynamics, we
will assume thatEissd ,Lissd are zero or negligible for
usu.tE,tL, respectively, withtE,tL!T. We will also impose
the slow learning rate assumptionT!tw, where tw is the
time scale over which weights undergo significant relative
change. The existence of approximate negative image states
requires[14] that the spacing of presynaptic spike times be
much smaller than the widths ofEi andLi: d!tE,tL. These
time-scale assumptions can be summarized as

d ! stE,tLd ! T ! tw.

Typical values from the mormyrid ELL ared,1 ms [27],
tE,20 ms [3], tL,40 ms [3], T,80 ms [[27] (b)], and
tw,102T [3].

FIG. 1. Schematic of the architecture. The postsynaptic cell re-
ceives inputs fromN presynaptic neurons, a repeated sensory input
fsxd, and a noisy input. Presynaptic celli spikes at timexi in each
period off and has synaptic weightwi onto the postsynaptic cell.
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IV. WEIGHT DYNAMICS

We now derive the random walk for the weight dynamics
by computing the possible weight changesDwistd=wist+Td
−wistd and their corresponding probabilities. The details here
are very similar to those in[14], deviating only in the treat-
ment of postsynaptic spike generation. Instead of a variable
number of spikes per EOD cycle, occurring at a mean rate
per unit time, we now have a single postsynaptic spike per
cycle whose occurrence is given by a probability density.

The nonassociative change inwistd due to the single
presynaptic spike atsxi ,td is ai. For the associative change
due to presynaptic and postsynaptic spike pairs, the calcula-
tion is identical to that in[14]; for a pair consisting of a
presynaptic spike atsxi ,td and postsynaptic spike atsx,td, the

change in wistd is approximately L̊isx−xid, where L̊issd
=on=−`

` Liss−nTd is the periodization ofLi with periodT.
A postsynaptic spike betweent and t+T occurs with a

probability densitys1/Tdf(Usx,td) in x, with the probability
of zero postsynaptic spikes being 1−s1/Tde0

Tdxf(Usx,td).
Hence the change inwi due to postsynaptic spikes betweent

andt+T is L̊isxd with densitys1/TdfsUsx,tdd in x and 0 with
probability 1−s1/Tde0

Tdxf(Usx,td). The total change inwistd
due to both nonassociative and associative learning is there-
fore

Dwistd = 5ai + L̊isxd, densityf„Usx,td…,

ai, probability 1 −s1/TdE
0

T

dx f„Usx,td….

s7d

The calculation of the non-noisy component of the postsyn-
aptic potential,Usx,td, is the same as in[14]; we find that

Usx,td = fsxd + o
j=1

N

wjstdE̊ jsx − xjd, s8d

where E̊issd=on=−`
` Eiss−nTd is the periodization ofEi with

period T. Defining f̃ by f̃(x,wstd)= f(fsxd+o j=1
N wjstdE̊ jsxd),

we have from Eqs.(7) and (8) the following expression for
the total change inwistd:

Dwistd

= 5ai + L̊isxd, densitys1/Td f̃„x,w1std, . . . ,wNstd…,

ai, probability 1 −s1/TdE
0

T

dxf̃„x,w1std, . . . ,wNstd….

s9d

Equation(9) defines the random walk for the weight dynam-
ics. It is discrete time(steps occur only att=nT, nPZ),
continuous space(steps can take a continuum of values), and
inhomogenous(step probabilities depend on position).

The common periodicity of the functionsE̊i, L̊i, andf is
an important feature, allowing the systematic use of Fourier
techniques.

V. ONE WEIGHT

To illustrate the technique in the simplest possible setting,
we first examine the case of a single weight. If there is only
one weightw1std, then without loss of generality we may

takex1=0 by translatingf if necessary. Writingwstd, a, L̊,

andE̊ for w1std, a1, L̊1, andE̊1, the random walk, Eq.(9), for
the weight dynamics becomes

Dwstd = 5a + L̊sxd, densitys1/Td f̃„x,wstd…,

a, probability 1 −s1/TdE
0

T

dxf̃„x,wstd…,

s10d

where

f̃„x,wstd… = f„fsxd + wstdE̊sxd….

From the random walk for the weight dynamics we derive
the moments of the equilibrium weight distribution in three
steps. First we write the master equation for the time evolu-
tion of the probability distribution of the weight and the cor-
responding functional equation for the equilibrium(station-
ary) distribution. Taking the Fourier transform yields a
differential equation for the Fourier transform of the equilib-
rium distribution. Taylor expansion of this equation yields
recurrence relations for the moments.

Notice that the set of step values in the walk(10) is inde-
pendent ofw; hence the equilibrium distributionPswd must
satisfy Eq.(4). From the step values and step probabilities in
Eq. (10) we have

Pswd = F1 −
1

T
E

0

T

dxf̃sx,w − adGPsw − ad

+
1

T
E

0

T

dxf̃„x,w − fa + L̊sxdg…P„w − fa + L̊sxdg….

s11d

Taking the Fourier transformedw eikw on both sides, chang-
ing variables, and rearranging yields

P̂skdf1 − eikag =
1

T
E

0

T

dxfeik†a+L̊sxd‡ − eikag

3E dw8eikw8 f̃sx,w8dPsw8d. s12d

A physiologically plausible spike output functionf would
take the form of a smooth, monotonically increasing sig-
moid, but for maximal simplicity we assumef is piecewise
linear:
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fsud =5
0, u , − V − u,

1

2T
X1 +

u − u

V
C , − V − u ø u ø V − u,

1

T
, u . V − u,

s13d

so that f̃ is given by

f̃sx,wd =5
0, Usxd , − V − u,

1

2T
X1 +

Usxd − u

V
C , − V − u ø Usxd ø V − u,

1

T
, Usxd . V − u,

s14d

with Usxd=fsxd−u+wE̊sxd.
We further assume that the equilibrium weight distribu-

tion Pswd is zero or negligible forw such thatUsxd,−V
−u or Usxd.V−u. This is aconfinement conditionon the
equilibrium postsynaptic potentialUsxd and will be justified
later. Note that the confinement condition helps justify the
piecewise linear assumption onf, since the more “confined”
the postsynaptic potentialUsxd, the better our piecewise lin-
ear f approximates a smooth sigmoid in the region where
Usxd is concentrated. If the confinement condition holds,

then in Eq.(12) we may replacef̃sx,w8d under the integral
by the following linear function ofw:

1

2T
X1 +

fsxd − u + wE̊sxd
V

C .

Using edw eikwwPswd= P̂8skd, we then obtain

P̂skdF1 − eika −
1

T
E

0

T

dx
1

2
X1 +

fsxd − u

V
ChsxdG

=
1

i
P̂8skd

1

T
E

0

T

dx
1

2

E̊sxd
V

hsxd, s15d

where hsxd=eikfa+L̊sxdg−eika. By Eq. (6), the moments of

Pswd are (up to powers ofi) just the derivatives ofP̂skd at
k=0; since those derivatives are implicitly constrained by
Eq. (15), the moments ofPswd are constrained by Eq.(15).
Specifically, the Taylor expansion of Eq.(15) aroundk=0
will yield a hierarchy of recurrence relations for the deriva-

tives of P̂skd and hence for the moments ofPswd. The Taylor
expansions of the exponentials are

eika = o
n=0

`
in

n!
ankn,

eiksa+L̊sxdd = o
n=0

`
in

n!
†a + L̊sxd‡nkn.

For the expansion of the characterisitic functionP̂skd we

expand the exponential in the definition ofP̂skd and invert
the order of summation and integration:

P̂skd =E dw eikwPswd = o
m=0

`
im

m!
kmE dw wmPswd

= o
m=0

`
im

m!
kwmlkm.

From this it follows that

1

i
P̂8skd =

1

i
o
m=0

`
im

m!
kwmlkm−1m= o

m=0

`
im

m!
kwm+1lkm.

By substituting these expansions into Eq.(15) and equating
coefficients ofkm on both sides, we obtain the following
relations:

o
m=0

m Sm

m
Dfgm−m

f kwml − gm−m
E kwm+1lg = 0,

m = 0,1,2, . . . , s16d

where for brevity we have defined

gn
f = dn,0 − an −

1

T
E

0

T

dx
1

2
X1 +

fsxd − u

V
Chfa + L̊sxdgn − anj,

gn
E =

1

T
E

0

T

dx
1

2

E̊sxd
V

hfa + L̊sxdgn − anj.

The relations(16) are lower triangular2 and hence are easily
rearranged to yield explicit recurrence relations for the mo-
ments in terms of moments of lower degree only:

kwml = −
gm

f

mg1
E −

1

mg1
E o

m=1

m−1

kwmlcm,m,

m = 1,2, . . . , s17d

where

cm,m = Sm

m
Dgm−m

f − S m

m− 1
Dgm−m+1

E .

We may now compute the central momentsMk=ksw
−kwldkl by expressingkwnl in terms of thehMkj:

kwnl = ksw − kwl + kwldnl = o
k=0

n Sn

k
DMkkwln−k. s18d

Substituting into Eq.(17) and rearranging yields

2One could also derive moment equations via the more direct
route of Taylor expanding, inw, the equilibrium condition(11) for
Pswd, but the resulting moment equations are not triangular. In fact
they are fully coupled(each equation involving all moments, in
general) and hence not readily solvable.
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Mm = − Sg1
f

g1
EDm

−
gm

f

mg1
E −

1

mg1
E o

m=1

m−1 Sg1
f

g1
EDm

cm,m + o
k=2

m−1

Mk

H− Sm

k
DSg1

f

g1
EDm−k

−
1

mg1
E o

m=k

m−1 Sm

k
DSg1

f

g1
EDm−k

cm,mJ .

s19d

For m=2,3,4 weobtain

M2 = −
1

2

g2
f

g1
E +

1

2

g1
fg2

E

sg1
Ed2 ,

M3 = −
1

3

g3
f

g1
E +

1

3

g1
fg3

E

sg1
Ed2 +

1

2

g2
fg2

E

sg1
Ed2 −

1

2

g1
fsg2

Ed2

sg1
Ed3 ,

M4 =
3

4

sg2
fd2

sg1
Ed2 −

3

2

g1
fg2

fg2
E

sg1
Ed3 +

3

4

sg1
fd2sg1

Ed2

sg1
Ed4 −

1

4

g4
f

g1
E +

1

4

g1
fg4

E

sg1
Ed2

+
1

2

g2
fg3

E

sg1
Ed2 +

1

2

g3
fg2

E

sg1
Ed2 −

g1
fg2

Eg3
E

sg1
Ed3 −

3

4

g2
fsg2

Ed2

sg1
Ed3 +

3

4

g1
fsg2

Ed3

sg1
Ed4 .

s20d

We can see fromM3 alone that in general the equilibrium
weight distribution is not Gaussian. For generic PSPE and
learning ruleL there are no polynomial relations among the
coefficientsgn

E andgn
f, henceM3 is generically nonzero.

To determine the dependence of the moments on step size,
we multiply botha andL, and hence the steps of the random
walk, by a scalarl. The coefficientsgn

E andgn
f are then both

Oslnd, and substitution into Eq.(20) yields

M2 = Osld,

M3 = Osl2d,

M4 = 3M2
2 + Osl3d.

Hence asl→0 the skew and kurtosis approach Gaussian
values:

sskewd =
M3

M2
3/2 = Osl1/2d → 0,

skurtosisd =
M4

M2
2 = 3 +Osld → 3.

VI. MULTIPLE WEIGHTS

We now apply the technique to the case of multiple
weightswi, i =1,2, . . . ,N. The algebra is more complicated,
but the structure of the derivation is identical to the single-
weight case. For notational compactness we introduce the
vector notation

wstd = 1w1std
A

wNstd
2, a = 1a1

A
aN

2 ,

E̊sxd = 1 E̊1sx − x1d

A

E̊Nsx − xNd
2, L̊sxd = 1 L̊1sx − x1d

A

L̊Nsx − xNd
2 .

The random walk for the weight vectorwstd takes place in
RN, with the walk for each componentwistd given by Eq.
(10). In vector notation the walk forwstd is then

Dwstd = 5a + L̊sxd, densitys1/Td f̃„x,wstd…,

a, probability1 −s1/TdE
0

T

dxf̃„x,wstd…,
s21d

where

f̃„x,wstd… = fffsxd + wstd · E̊sxdg

and the center dots·d indicates the vector dot product.
Again, the step sizes are independent of position, so the

equilibrium condition, Eq.(4), applies. We have

Pswd = F1 −
1

T
E

0

T

dxf̃„x,w − adGPsw − ad +
1

T
E

0

T

dxf̃„x,w

− †a + L̊sxd‡…P„w − †a + L̊sxd‡…. s22d

As before, we take the(now n-dimensional) Fourier trans-
form on both sides. Applyingedw eik·w, changing variables,
and rearranging yields

P̂skdf1 − eik·ag =
1

T
E

0

T

dxhsxdE dw8eik·w8 f̃sx,w8dPsw8d,

s23d

where

hsxd = eik·†a+L̊sxd‡ − eik·a. s24d

We now assume that the postsynaptic gain functionf is

piecewise linear and given by Eq.(13); hence,f̃ is given by

Eq. (14), with Usxd=fsxd−u+w·E̊sxd. And as before, we
assume thatPswd is negligible for w such thatUsxd,−V
−u or Usxd.V−u, a confinement condition onPswd, which

will be justified later. Then we may replacef̃sx,w8d under the
integral by the linear function ofw:

1

2T
S1 +

fsxd − u + w · E̊sxd
V

D .

Using

E dw eik·wwjPswd =
1

i

] P̂skd
] kj

,

we obtain the following first-order partial differential equa-

tion (PDE) for P̂skd:
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P̂skdF1 − eik·a −
1

T
E

0

T

dx
1

2
S1 +

fsxd − u

V
DhsxdG

= o
j=1

N
1

i

] P̂skd
] kj

1

T
E

0

T

dx
1

2

E̊ jsx − xjd
V

hsxd. s25d

Taylor expansion of both sides of this equation aroundk=0
will yield recurrence relations for the moments ofw. The
Taylor expansion of a functiong on RN is given by

gsk1, . . . ,kNd = o
n=0

`
1

n! o0
S n

s1 ¯ sN
D

3U ]ngsz1, . . . ,zNd
]z1

s1
¯ ]zN

sN U
z=0

p
l

kl
sl . s26d

The expansions of the complex exponentials in Eq.(25) are
thus

eik·a = o
n=0

`

o
s

in

n!
Sn

s
Dp

l

al
slp

l

kl
sl ,

eik·sa+L̊sxdd = o
n=0

`

o
s

in

n!
Sn

s
Dp

l

fa + L̊sxdgl
slp

l

kl
sl , s27d

where in the sums on the right,s=ss1s2¯sNdT with eachsi a
nonnegative integer andoi=1

N si =n. For brevity we writes n
s
d

for the multinomial coefficient in Eq.(26).
As before, for the expansion of the characteristic function

P̂skd we expand the exponential in the definition ofP̂skd and
invert the order of summation and integration:

P̂skd =E dw eik·wPswd = o
m=0

`

o
r

im

m!
Sm

r
D

3FE dw Pswdp
l

wl
rlGp

l

kl
rl = o

m=0

`

o
r

im

m!
Sm

r
D

3kw1
r1w2

r2
¯ wN

rNlp
l

kl
rl , s28d

wherer =sr1r2¯ rNdT with eachr i a nonnegative integer and

oi=1
N ri =m. From this expansion ofP̂skd it follows that

1

i

] P̂skd
] kj

= o
m=0

`

o
r

im

m!
Sm

r
Dkw1

r1
¯ wN

rNlr jp
l

kl
rl−dl j . s29d

Using the combinatorial identity

im−1

m!
Sm

r
Dr j =

im−1

sm− 1d!
S m− 1

r1 ¯ r j − 1¯ rN
D ,

we may reindex Eq.(29) to yield

1

i

] P̂skd
] kj

= o
m=0

`

o
r

im

m!
Sm

r
Dkw1

r1
¯ wj

r j+1
¯ wN

rNlp
l

kl
rl .

s30d

When the expansions, Eqs.(27), (28), and (30), are substi-
tuted into Eq.(25), equating the coefficients ofplkl

ql on both
sides yields

1

m!
Sm

q
Dkw1

q1w2
q2
¯ wN

qNl = o
r+s=q

1

n ! m!
Sm

r
DSn

s
D

3fgs
fkw1

r1w2
r2
¯ wN

rNl

+ o
j=1

N

gs
Ejkw1

r1
¯ wj

r j+1
¯ wN

rNl‡,

s31d

where

gs
f =

1

T
E

0

T

dx
1

2
S1 +

fsxd − u

V
DSp

l

fa + L̊sxdgl
sl − p

l

al
slD

+ p
l

al
sl ,

gs
Ej =

1

T
E

0

T

dx
1

2

E̊ jsx − xjd
V

„p
l

†a + L̊sxd‡l
sl − p

l

al
sl
…,

and q=sq1q2¯qNdT, each qi a non-negative integer, with
oi=1

N qi =m. A slight simplification follows fromg0
f=1 and

g0
E=0: the quantity on the left side of Eq.(31) is canceled by

the term on the right side withs=0 andr =q. The resulting
recurrence relations are

0 = o
m , m
r+s=q

1

n ! m!
Sm

r
DSn

s
Dfgs

fkw1
r1w2

r2
¯ wN

rNl

+ o
j=1

N

gEjkw1
r1
¯ wj

r j+1
¯ wN

rNlg,

0 ø qi ø m, o
i=1

N

qi = m,m = 1,2, . . . . s32d

For each choice ofq we obtain a single linear equation in-
volving moments of total order at mostm=oi qi. Regarding
the moments of total orderm as unknowns to be solved for in
terms of moments of total order less thanm, we have a linear
system with the same number of equations as unknowns. The
coefficient matrix of this system involves the quantitiesg·

f

and g·
E. For genericE and L there are no polynomial rela-

tions among these quantities; hence the determinant of the
coefficient matrix is generically nonzero, and the system can
be inverted to give the moments of total orderm in terms of
g·

f, g·
E, and the moments of total order less thanm. The

complete moment hierarchy can thus be obtained: first mo-
ments of total order 1, then moments of total order 2, and so
on.
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A. Equilibrium mean

For m=1 we must haveqj =di j for somei. Since in Eq.
(32) only terms withm,m appear, andm=o j r j, the only
possibility for r is r =0, and thensj =qj =di j . The recurrence
relation Eq.(32) then becomes

0 = ai +
1

T
E

0

T

dx
1

2
X1 +

fsxd − u

V
CL̊isx − xid

+ o
j=1

N

kwjl
1

T
E

0

T

dx
1

2V
E̊ jsx − xjdL̊isx − xid. s33d

Allowing i to vary over all possible values1,2, . . . ,N, we
haveN linear equations in theN unknownswi, which can be
written in vector form as

Ckwl = d, s34d

with the matrixC and vectord given by

Cij = −
1

2V

1

T
E

0

T

dx E̊ jsx − xjdL̊isx − xid, s35d

di = ai
1

T
E

0

T

dx
1

2
X1 +

fsxd − u

V
CL̊isx − xid. s36d

The overall minus sign in the definition ofC is for later
convenience. For genericE andL the matrixC is invertible,
and we havekwl=C−1d. The physical meaning of this rela-
tion can be illuminated by rewriting Eq.(33) as follows:

0 = ai +
1

T
E

0

T

dxS1 +
fsxd − u + o j=1

N
kwjlE̊ jsx − xjd

V
DL̊isx

− xid = ai +
1

T
E

0

T

dxkflsxdL̊isx − xid,

wherekflsxd we define to be the value offsxd whenw=kwl.
Now add and subtractais1/Tde0

Tdxkflsxd to obtain

0 =F1 −
1

T
E

0

T

dxkflsxdGai +
1

T
E

0

T

dxkflsxdfai + L̊isx − xidg

= kDwil. s37d

We find that the equilibrium mean weight vectorkwl is that
for which the mean weight change is zero for all weights.
This condition is obvious on independent grounds and could
have been used to calculatekwl directly, without recourse to
the moment hierarchy relations. But for moments of total
order 2 or higher, transparent conditions such as this are not
available; in that case we have no choice but to solve Eq.
(32).

Given the equilibrium mean weightskwl, we can calculate
the equilibrium mean postsynaptic potentialkUlsxd via

kUlsxd = fsxd + E̊sxd · kwl = fsxd + E̊sxd ·C−1d,

providedC is invertible.

B. Equilibrium variance

We now takem=2 andqk=dik+d jk in Eq. (32). After some
simplification, usingC, d, kfl, andkwl from above, we obtain

0 = −o
k=1

N

Cjkkwkwil − o
k=1

N

Cikkwkwjl − kwildj − kwjldi

+
1

T
E

0

T

dxkflsxd 3 hfai + L̊isx − xidgfa j + L̊ jsx − xjdg

− aia jj.

This can be rearranged to give

o
k=1

N

Cjkkwkwil + o
k=1

N

Cikkwkwjl − kwilo
k=1

N

Cjkkwkl

− kwjlo
k=1

N

Cikkwkl =
1

T
E

0

T

dxkflsxdhfai + L̊isx − xidgfa j

+ L̊ jsx − xjdgj + F1 −
1

T
E

0

T

dxkflsxdGaia j =

− kDwi D wjl.

In vector form this becomes

CskwwTl − kwlkwlTd + skw2l − kwlkwlTdCT = kDw D wTl.

s38d

The covariance of a vector random variablev is cov v
=kvvTl−kvlkvlT. Equation(38) then takes the compact form

Cscov wd + scov wdCT = covD w, s39d

where we have used the equilibrium mean conditionkDwl
=0 on the right side. Equation(39) is a Lyapunov equation
[28] for cov w, giving the equilibrium weight covariance in
terms ofC (which depends onE andL) and covDw (which
depends onkfl, a, andL). Both C and covDw can be cal-
culated from the parameters of the system, and then the equi-
librium covariance covw, if it exists, must satisfy Eq.(39).

A theorem of Ostrowski and Schneider[28,29] gives con-
ditions for the existence and uniqueness of solutions to
Lyapunov equations. IfS is symmetric positive definite and
A and −A have no common eigenvalues, then the Lyapunov
equationAH+HAT=Shas a unique solutionH. Furthermore,
H is symmetric and has the sameinertia (number of eigen-
values with positive, zero, or negative real part) asA.

Since covDw is necessarily symmetric positive definite,
the theorem says that a symmetric solution covw to Eq.(39)
exists uniquely providedC and −C have no common eigen-
values, and covw is positive definite if and only if all eigen-
values ofC have positive real part.

The condition thatC and −C have no common eigenval-
ues is true for genericC and hence for genericE andL. The
condition that covw be positive definite is needed in order to
interpret covw as the covariance matrix of a probability dis-
tribution; we say covw is physical if it is positive definite.
Denoting byln

C the nth eigenvalue ofC, we then have the
following physicality condition:
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cov w physical⇔ Reln
C . 0 for all n. s40d

A theorem of Heinz[28,30] says that if all eigenvalues ofA
have positive real part and all eigenvalues ofB have negative
real part, then the(unique) solution X to the equationAX
−XB=Y is given by

X =E
0

`

ds e−sAYesB, s41d

where the matrix exponentials are defined via Taylor expan-
sions. The assumptions on the eigenvalues ofA andB ensure
that the integral in Eq.(41) converges, and one can show by
direct substitution that the resultingX satisfiesAX−XB=Y. If
the physicality condition(40) holds, thenC and −CT satisfy
the conditions forA andB, respectively, and we obtain

cov w =E
0

`

dse−sCscovD wde−sCT
. s42d

This gives the equilibrium covariance matrix explicitly in
terms of system parameters.

Since the postsynaptic potentialUsxd is a deterministic
function of the synaptic weight vectorw, the weight covari-
ance covw determines the covariance of the postsynaptic

potential. FromUsxd=fsxd+ E̊sxdw, we have

covsUsxd,Usydd = E̊sxdTcov wE̊syd s43d

for any pair of timesx,y in the intervalf0,Tg. Of particular
interest is the diagonal variance ofUsxd:

cov„Usxd,Usxd… = E̊sxdTcov wE̊sxd. s44d

Our derivation of the equilibrium moment hierarchy equa-
tions relied on the equilibrium distribution ofUsxd being
negligible on the “tails” of the postsynaptic spike probability
function f. We will show in the next section, for the case of
homogeneous parameters, that the confinement condition on
Usxd can always be satisfied by adjusting the rates of asso-
ciative and nonassociative learning.

Note that for a spatially extended PSPE, Eq. (44) implies
that the diagonal variance ofUsxd depends on the full matrix
cov w; in other words, it depends not only on the diagonal
variances of the synaptic weightsw, but also on the off-
diagonal correlations between different synaptic weights.

VII. MULTIPLE WEIGHTS, HOMOGENEOUS
PARAMETERS

For maximal generality in the foregoing analysis, we have
allowed the postsynaptic potential functions and spike-
timing-dependent learning rules to be different for different
presynaptic neurons and have allowed the presynaptic spike
times to be arbitrary. Further analytical progress can be made
in the case where the system parameters are homogeneous;
i.e., the postsynaptic potential functions and spike-timing-
dependent learning rules are the same for all presynaptic
neurons, and the presynaptic spike times are regularly
spaced.

For such parameters it will turn out that the matrixC, the
coefficient matrix in the Lyapunov equation(39) for cov w,
has a special form: it iscirculant [31]. The matrix covDw on
the right side of the Lyaponov equation for covw is not
circulant in general, but it is circulant if the postsynaptic
spike probability densitykflsxd is independent ofx. Now it
was shown in[14] that in the case of homogeneous param-
eters, if the spacingd between presynaptic spike times is
sufficiently small and provided certain other constraints hold,
the (mean) equilibrium weight vector has the property that
the mean total postsynaptic potentialkUlsxd is approximately
constant.3 In that case the mean equilibrium postsynaptic
spike densitykflsxd is also approximately constant, and the
matrix covDw is approximately a circulant matrixD. The
Lyapunov equation for covw is then approximately

Cscov wd + scov wdCT = D, s45d

with solution given by

cov w =E
0

`

ds e−sCDe−sCT
. s46d

The eigenvalues and eigenvectors of circulant matrices are
easily calculated; furthermore, all circulant matrices can be
simultaneouslydiagonalized. Simultaneous diagonalization
of C, CT, andD in Eq. (46) will yield an explicit solution for
cov w in terms of the eigenvectors and eigenvalues ofC and
D, which will themselves be written as explicit functions of
the system parameters.

Let Essd, Lssd, and a denote the common postsynaptic
potential function, associative learning rule, and nonassocia-
tive learning rule, respectively. Let the spike time for presyn-
aptic cell i be xi =si −1dd, i =1,2, . . . ,N, d=T/N. We then
have

Cij = −
1

2V

1

T
E

0

T

dxL̊sx − xidE̊sx − xjd, s47d

and for kflsxd approximately the constantkfl we have
covDw.D, where

Dij = a2s1 − kfld + kfl
1

T
E

0

T

dxfa + L̊sx − xidgfa + L̊sx − xjdg.

By periodicity of L̊, this can be simplified to

Dij = a2 + 2kflab + kfl
1

T
E

0

T

dxL̊sx − xidL̊sx − xjd,

s48d

whereb=s1/Tde0
T dxL̊sxd.

A matrix A is circulant[31] if each row ofA equals the
row above it shifted one entry to the right(and wrapped
around at the edges); in other words,

3The present model differs from the model in[14] in having a
postsynaptic spike probability density instead of a mean postsynap-
tic spike rate, but the argument is unaffected.
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Asi+1dmod N,s j+1dmod N = Aij for all i, j .

We now show that bothC andD are circulant. First, letgsxd
andhsxd be any periodic functions ofx with periodT, and let
the hxij be regularly spaced onf0,Tg as defined above. LetA
be the matrix defined by

Aij =E
0

T

dx fsx − xidgsx − xjd. s49d

Taking si , jd to (si +1dmod N,s j +1dmod N) in Eq. (49) shifts
the argument of both functions by −d, and by periodicity this
does not change the value of the integral. Hence any matrix
of the form (49) is circulant.

The constant matrices(all of whose entries are the same)
are also circulant, and circulant matrices are closed under
addition, scalar multiplication, and transposition. Hence by
Eqs.(47) and(48), C andD are both circulant and so isCT.

It is easily shown [31] that the vectors usnd, n
=1,2, . . . ,N, with components

ul
snd = e2pisl−1dn/N, k = 1,2, . . . ,N, s50d

are a complete set of eigenvectors for any circulant matrixA,
with corresponding eigenvalueln given by

ln = o
l=1

N

Ajle
2pis j−ldn/N. s51d

The expression on the right in Eq.(51) is independent ofj
becauseAjl and the complex exponential both depend only
on s j − ld mod N. It is easily checked from Eq.(51) that
adding a constant matrix(all entries the same) to a nonzero
circulant matrix has no effect on its eigenvalues.

Let R be the unitary matrix whosenth column is the vec-
tor usnd, and letL be the diagonal matrix with entriesln.
Then

A = RLR* ,

whereR* is the complex conjugate transpose ofR.
In the present context it will be convenient to define wave

numberskn so that the argument of the complex exponential
in Eq. (50) is iknxl; this we can arrange by takingkn
=2pn/T, n=1,2, . . . ,N. From Eq.(51), the eigenvalues ofC
andD are then

ln
C = −

1

2V
o
l=1

N

eiknsxj−xld
1

T
E

0

T

dxL̊sx − xjdE̊sx − xld,

ln
D = kflo

l=1

N

eiknsxj−xld
1

T
E

0

T

dxL̊sx − xjdL̊sx − xld.

By periodicity of E̊ and L̊ and regular spacing of thehxij,
these can be rewritten as

ln
C = −

1

2V
o
l=1

N

eiknxl
1

T
E

0

T

dxL̊sx − xldE̊sxd, s52d

ln
D = kflo

l=1

N

eiknxl
1

T
E

0

T

dxL̊sx − xldL̊sxd. s53d

Let LC andLD be the diagonal matrices with entriesln
C and

ln
D, and letR be the unitary matrix defined above with entries

Rjl = uj
sld = eiklxj .

ThenC=RLCR* andD=RLDR* . Transposition takes eigen-
values to their complex conjugates, soCT=RLCR* . From
RR* = I and Taylor expansion it follows thatesC=ResLC

R*

and esCT
=ResLC

R* . Substitution into Eq.(45) then yields a
diagonalization of covw:

cov w = RFE
0

`

ds e−sLC
LDe−sLCGR* = RLwR* ,

whereLw is the diagonal matrix with entries

ln
w =E

0

`

ds e−sln
C
ln

De−sln
C

=
ln

D

2 Reln
C , s54d

provided Reln
C.0. SinceD is symmetric positive definite

(it is, by construction, a physical covariance matrix), we
haveln

D real and positive for alln. Recall that in order for
the solution of the Lyapunov equation(45) to be positive
definite, all eigenvalues ofC must have positive real part—
i.e., Reln

C.0 for all n. If this physicality condition is satis-
fied, then the eigenvalues of covw given by Eq.(54) are real
and positive. These eigenvalues, withln

C and ln
D given by

Eqs.(52) and (53), are the variances associated with the in-
dependent components of the equilibrium weight distribu-
tion. The corresponding eigenvectors are theusnd, with com-
ponentsuj

snd=eiknxj.
SinceV.0, the condition for physicality of the covari-

ance is

Reo
l=1

N

eiknxl
1

T
E

0

T

dxL̊sx − xldE̊sxd , 0 for all n.

This coincides with the condition derived in[14] for stability
of themeanweight state. Roughly speaking, it follows that if
there exists an equilibrium weight distributionPswd (with
finite covariance matrix), then the mean of the distribution
must be stable. We do not address the stability of the equi-
librium distribution (or, equivalently, the stability of all mo-
ments of the equilibrium distribution) in the present paper,
but a natural conjecture would be that if the equilibrium
distributionPswd exists, then it is necessarily stable.

From covw=RLwR* we can now write down explicit ex-
pressions for the equilibrium covariance of any pair of
weights:

covswj,wld = o
n,m=1

N

RjnLnm
w Rml

* = o
n=1

N

RjnRnln
w = o

n=1

N

eiknsxj−xldln
w,

s55d

with ln
w given by Eq.(54) andln

C, ln
D given by Eqs.(52) and

(53).
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Note that covswj ,wld depends onj and l only via the
differencesxj −xld mod T, due to periodicity and translational
invariance of the architecture for homogeneous parameters.
Also, the covariance of the weights depends only on the
associative partL of the learning rule, since the nonassocia-
tive parta does not appear in Eq.(55). This is not surprising,
since the role ofa is essentially analagous to that of a con-
stant externally applied force in a physical system. Such a
force changes the position of the equilibrium, but does not
alter the dynamics around the equilibrium.

A. Confinement

Our derivation of the moment hierarchy relations, Eqs.
(32), relied on the assumption that the equilibrium weight
distribution was negligible on the “tails” of the piecewise
linear postsynaptic gain functionf. This places a constraint
on the meankUlsxd and diagonal variance cov(Usxd ,Usxd) of
the postsynaptic potential: they must be such that the mean is
a large number of standard deviations away from the tails.
For eachx, let rsxd be the standard deviation ofUsxd divided
by the distance fromkUlsxd to the nearest tail—i.e., toV
−u or −V−u. The parameterrsxd will be referred to as the
confinement parameterfor the system. The confinement con-
dition holds providedkUlsxd is in the interval s−V−u ,V
−ud and rsxd!1, for all x.

We now argue that by adjusting only the rates of nonas-
sociative and associative learning, the confinement condition
can always be satisfied. Multiplying the associative learning
rule by a positive scalar factorb and both nonassociative and
associative components by a positive scalar factorl, we
have weight changes given by

Dwstd = 5la + bL̊sxd,densitys1/Td f̃„x,wstd…,

la, probability 1 −s1/TdE
0

T

dxf̃„x,wstd….

s56d

The ratio of associative to nonassociative learning rate is
parametrized byb, while the overall learning rate is param-
etrized byl. Now it was shown in[14] that in the case of
homogeneous parameters, under certain mild conditions, the
equilibrium mean weight vector has the property that
kUlsxd is approximately constant(i.e., the equilibrium is an
approximate negative image state). Hencekfl in Eq. (37) is
approximately constant. If it were exactly constant, then Eq.
(37) (for homogeneous parameters) would yield, after can-
celling l on top and bottom,

kfl =
− a

a +
b

T
e dxL̊sxd

.

Provideda andedxL̊sxd have opposite sign(shown in[14]
to be necessary for existence of a negative image equilib-
rium) the right side of this equation can be made to have any
desired value by appropriate choice ofb.0. Hencekfl can
be made to have any desired value by appropriate choice of

b; in particular, a range ofb exists for whichkfl falls in the
open interval(fs−V−ud , fsV−ud). Since f is invertible for
arguments ins−V−u ,V−ud and kfl= fskUld, it follows that
by appropriate choice ofb, kUl can be made to have any
value in s−V−u ,V−ud. Sincekflsxd approximately constant
implies kUl approximately constant, it follows that the mean
postsynaptic potentialkUlsxd can always be made to lie be-
tween the tails, for allx.

It remains to show that the diagonal variance
cov(Usxd ,Usxd) can be made sufficiently small so that the
distribution ofUsxd is negligible on the tails. We do this by
holdingb fixed and varyingl. Since the matrixC is propor-
tional to l and the matrix covDw is proportional tol2, it
follows from Eq. (38) that covw—and hence covU from
Eq. (48)—is proportional tol. In particular, cov(Usxd ,Usxd)
can be made arbitrarily small by takingl sufficiently small.

Thus, by appropriate choice ofb andl, the confinement
condition can always be satisfied. The value ofb determines
the location of the mean postsynaptic potential, and the value
of l determines the width of the distribution around the
mean. The latter fact—that the width of the equilibrium dis-
tribution of the postsynaptic potential is proportional to the
overall learning rate—has direct behavioral relevance to the
mormyrid fish, since it implies a tradeoff between speed of
adaptation and accuracy of the adapted state.4

B. Dense spacing limit

In the architecture of the mormyrid ELL, the spacingd
between presynaptic spike times is much less than the widths
tE, tL of the PSPE and learning ruleL. In the dense spacing
limit the set of discrete weights per unit timehwi /dj corre-
sponding to presynaptic spikes at timeshxij becomes a con-
tinuum weight densityWsyd, with weight Wsyddy corre-
sponding to presynaptic spike times betweeny and y+dy.
Sums overxi are replaced by integrals overy. The matricesC
andD in Eq. (45) become infinite dimensional, with eigen-
valuesln

C, ln
D given by

ln
C = −

1

2VT
E

0

T

dy eiknyE
0

T

dxL̊sx − ydE̊sxd, s57d

ln
D = −

kfl
T
E

0

T

dy eiknyE
0

T

dxL̊sx − ydL̊sxd, s58d

for n=0,1, . . .. Weintroduce some useful notation. LetFTfhg
be the sequence of Fourier coefficients for a functionh on
f0,Tg, given by FTfhgn=e0

Tdy eiknyhsyd with kn=2pn/T, n
=0,1, . . .. Let* T denote convolution on the intervalf0,Tg,
sg*Thdsxd=e0

Tdy gsx−ydhsyd. Let h̃ denote the horizontal re-

4The fact that the variance is proportional to the learning rate is
also true for inhomogeneous parameters, by the same argument. But
the confinement of the mean postsynaptic potentialkUlsxd is un-
clear in that case, because the equilibrium is not necessarily an
approximate negative image. Further work is required to character-
ize the equilibrium for inhomogeneous parameters.
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flection of h,h̃syd=hs−yd. Then Eqs.(57) and (58) can be
written as

ln
C = −

1

2VT
FTfL̊*TE̊˜gn,

ln
D =

kfl
T

FTfL̊*TL̊˜ gn.

Now we invoke the Fourier convolution theoremFTfg*hg
=FTfggFTfhg and the fact thatFTfg̃g=FTfgg, where z̄ de-
notes the complex conjugate ofz. This gives

ln
C = −

1

2VT
FTfL̊gnFTfE̊gn, s59d

ln
D = −

kfl
T

FTfL̊gnFTfL̊gn. s60d

The eigenvalues of the weight covariance are therefore

ln
W =

ln
D

2 Reln
C = − kflV

FTfL̊gnFTfL̊gn

RefFTfL̊gnFTfE̊gng
. s61d

It follows that the covariance ofWsyd andWszd is

cov „Wsyd,Wszd… = o
n=0

`

eiknsy−zdln
W = − 2pkflVFT

−1

3F FTfL̊gFTfL̊g

RefFTfL̊gFTfE̊gg
G sy − zd, s62d

where FT
−1fhgsxd=s1/2pdon=0

` eiknxhn is the inverse Fourier
transform onf0,Tg. The covariance of the postsynaptic po-
tential is then

cov Usy,zd =E
0

T

dxE
0

T

dx8E̊sy − xdcov Wsx,x8dE̊sz− x8d

= − 2pkflVE
0

T

dxE
0

T

dx8E̊sy − xdE̊sz− x8d

3 FT
−1F FTfL̊gFTfL̊g

RefFTfL̊gFTfE̊gg
G sx − x8d. s63d

One special case is worth noting: suppose the PSP and learn-
ing rule have identical functional form—i.e., are proportional
to one another—Lsxd=cEsxd for some(real) constantc. Then
we have

FT
−1F FTfL̊gFTfL̊g

RefFTfL̊gFTfE̊gg
Gx = FT

−1fcgsxd =
c

2p
dsxd,

wheredsxd is the Dirac delta function. For such a learning
rule the covariance of the weight density is

cov„Wsyd,Wszd… = − kflVcdsy − zd. s64d

In particular, the covariance(and hence the correlation) of
Wsyd andWszd is zero foryÞz; hence weights correspond-
ing to different presynaptic spike times are statistically inde-
pendent. This is surprising, since the coupling of weights
through the PSPE and learning ruleL has some nonzero
“range,” given roughly by the widths ofE andL, and within
this range one would expect the weights to necessarily have
some nonzero correlation. The result just derived says that in
certain exceptional cases this correlation may vanish. The
result was derived in the dense spacing limit, but can be
expected to hold approximately for the physical case of dis-
crete spacing and also to hold approximately forL not quite
proportional toE; this will be verified in the examples cal-
culated below. Given that the best current experimental mea-
surement of the learning rule in the mormyrid ELL[3] is not
inconsistent withE andL having the same functional form,
this vanishing correlation phenomenon may have biological
relevance.

VIII. EXAMPLES

We now compute the equilibrium weight covariances for
a class of PSP’s and learning rules consistent with those
measured in the mormyrid ELL, assuming homogeneous pa-
rameters. The PSP we take to be an excitatory alpha function
of width tE, and the learning rule we take to be alpha func-
tion, depressive, and pre-before-post, of widthtL:

Esxd = tE
2e−x/tEHsxd, s65d

Lsxd = − tL
2e−x/tLHsxd, s66d

whereHsxd is the Heaviside function:Hsxd=1 if xù0 and 0
otherwise(Fig. 2). In the above expressions bothE and L
have been normalized to unit area, but to ensure confinement
of the postsynaptic potential, the learning ruleL (and hence
the size of the learning steps) must be made sufficiently
small so that the confinement condition is satisfied.

FIG. 2. PSP and learning rules used in the examples. Stability
requires 3−2Î2,tL /tE,3+2Î2. Stable examples are drawn with
solid lines; end points of the stable interval are drawn with dashed
lines. Arbitrary units.
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It was shown in[14] that in order for the mean weight
dynamics to be stable near the(negative image) equilibrium,
the time constantstE andtL must satisfy

3 − 2Î2 ,
tL

tE
, 3 + 2Î2.

For tL /tE in this stable range, we calculated the equilib-
rium covariance of the synaptic weights and of the postsyn-
aptic potential and verified our predictions by direct Monte
Carlo simulation of the underlying random walk. The num-
ber of presynaptic cells was taken to beN=50, and to ensure
that the confinement condition was well satisfied, the rates of
nonassociative and associative learning were adjusted so that
the confinement parameter wasrsxd=0.2 for all x (i.e., the
tails were five standard deviations away from the mean
postsynaptic potential). By translational symmetry for homo-
geneous parameters, the diagonal variancesswi ,wid are inde-
pendent ofi, and the off-diagonal covarianceswi ,wjd de-
pends only onsxi −xjdmod T. The covariance matrix is then
completely described by the diagonal variance(a single
number) and the correlation of weightwi with the “midpoint”
weight wN/2, for i =1,2, . . . ,N; the correlation in this case is
just the covariance normalized by the diagonal variance. The
diagonal variance is shown in Fig. 3, and the correlation is
shown in Fig. 4, for various values oftL /tE between 3
−2Î2 and 3+2Î2. Note the approximate vanishing of off-
diagonal correlation fortL /tE near 1, as expected from the
analytic calculation in the dense-spacing limit. The manner
in which the correlation deviates from an approximate delta
function astL /tE deviates from 1 also shows an interesting
pattern: fortL /tE slightly greater than 1, the near-diagonal
(near-neighbor) correlation is positive, while fortL /tE
slightly less than 1, the near-neighbor correlation is negative.
But for tL /tE substantially greater than or less than 1, the

near-neighbor correlation is positive in both cases. The mag-
nitude of off-diagonal correlation tends to increase astL /tE
moves away from 1 in either direction. Near the limits of the
stable range oftL /tE, the near-neighbor correlation is close
to 1 and the “antipodal” correlation(correlation with weights
a half period away) is close to −1. Such strong long-range
correlation and anticorrelation was also observed numeri-
cally in [15] in mean weight dynamics for parameters near
the boundary of the stable region, with breakdown of stabil-
ity being characterized by the appearance of traveling waves.

The correlation of the postsynaptic potential is shown in
Fig. 5. FortL /tE near 1 the correlation is everywhere posi-
tive. As tL /tE deviates from 1, the correlation decreases, and
long-range anticorrelations appear. AstL /tE deviates still
further, the anticorrelation decreases in range and increases
in magnitude, and a positive long-range correlation appears.
For tL /tE near the limits of the stable range, the midrange
and long-range(antipodal) correlations approach −1 and +1,
respectively, similar to the behavior of the synaptic weight
correlation. The “scalloped” appearance of these curves for
largetL /tE is due totE being not much larger than the spac-
ing d=T/50 between presynaptic spike times, resulting in
only marginal overlap of adjacent PSP’s. For fixed PSP
width tE, such scalloping should vanish as the spacing of
presynaptic spike times goes to zero. It is believed[27(b)]
that in the mormyrid ELL the spacing of presynaptic spike
times is sufficiently dense that this scalloping would be in-
significant.

Comparison with direct Monte Carlo simulation of the
random walk revealed excellent agreement with prediction,
provided confinement was well satisfied; results fortL /tE
=5.814, near the upper end of the stable range, are shown in
Fig. 6. As above, nonassociative and associative learning
rates were adjusted so that the confinement parameterrsxd
was 0.2 for allx (i.e., the tails were five standard deviations
away from the equilibrium mean). Weights were taken to be
initially uncorrelated, with mean equal to the predicted mean
and variance equal to the predicted(diagonal) variance; the
initial correlation was then the discrete Dirac delta function.
To quantify convergence we used the mean absolute value of
the relative discrepancy between the predicted and actual
(ensemble mean) correlation. Translation invariance of the
correlation allowed us to reduce the size of fluctuations in
the simulation estimate by averaging not just over the en-
semble but also over the population ofN=50 weights in each
member of the ensemble.5 Using this measure, the correla-
tion in the simulation converged to within 1% –2% of the
predicted correlation in approximately 107 time steps(Fig.
6).

IX. DISCUSSION

Since changes in synaptic weights in STDP are due to
temporally discrete events(spikes or spike pairs), the dynam-

5Although the predicted correlation is translation invariant, the
fluctuations around the prediction are not necessarily uncorrelated.
For our purposes this is harmless; it simply means that we do not
obtain as large a reduction in fluctuation size by population averag-
ing as we would by using a 50-times larger ensemble.

FIG. 3. Diagonal variance of weights, for alpha functionsE and
L and for various values oftL /tE. The larger oftL andtE was taken
to be 0.2T in all cases. Diagonal variance vstL /tE, log-log plot.
Dotted lines indicate the boundary of the stable interval,tL /tE

=3±2Î2. Dimensionless units.
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FIG. 4. Correlation of weights, for alpha functionsE andL and
for various values oftL /tE. The larger oftL andtE was taken to be
0.2T in all cases. Curves are labeled by the value oftL /tE, and for
clarity curves are not joined to the point(0.5,1) which all curves
have in common.(a) Correlation ofwi with wN/2, versusxi /T, for
tL /tE significantly less than 1.(b) Same fortL /tE significantly
greater than 1.(c) Same fortL /tE near 1, with expanded vertical
scale. Dimensionless units.

FIG. 5. Correlation of postsynaptic potential, for alpha functions
E andL and for various values oftL /tE. The larger oftL and tE

was taken to be 0.2T in all cases.(a) Correlation of Usxd with
UsT/2d, versusx/T, for tL /tE significantly less than 1.(b) Same for
tL /tE significantly greater than 1.(c) Same fortL /tE near 1, with
expanded vertical scale. Curves are labeled by the value oftL /tE.
Dimensionless units.
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ics of such plasticity, in the presence of noise, is naturally
modeled as a discrete-time random walk. There is a large
body of mathematical technique for the analysis of such pro-
cesses[17].

From the weight dynamics expressed as a random walk
one can write down a master equation for the time evolution
of the weight probability distribution. From the master equa-
tion we obtain a functional equation for the equilibrium
weight distribution. Taking the Fourier transform of this
equation yields a differential equation for the characteristic
function of the equilibrium distribution, and Taylor expan-
sion then yields a hierarchy of recurrence relations for the
equilibrium moments. From the moments of the equilibrium
weight distribution we also obtain the moments of the
postsynaptic membrane potential.

For the case of a single weight, we explicitly calculate
moments up to fourth order. The distribution is shown to be

generically non-Gaussian, but the skew and kurtosis ap-
proach Gaussian values as the learning rate(size of steps)
goes to zero.

For the case of multiple weights we explicitly calculate
moments up to second order. The mean weight vector satis-
fies a simple matrix-vector equation, which is equivalent to
the condition that the mean step in the equilibrium state be
zero for all weights. The weight covariance matrix satisfies a
Lyapunov equation. An explicit solution to this equation, in
the form of a matrix integral, is obtained. For this solution to
be the covariance matrix of some probability distribution it
must be positive definite, which imposes a constraint on the
PSPE and the associative learning ruleL.

For the case of multiple weights with homogeneous
parameters, further analytical progress can be made. The
Lyapunov equation for the weight covariance matrix can be
fully diagonalized and the covariance of any pair of weights
found in closed form. From this we also obtain explicit ex-
pressions for the covariance of the postsynaptic potential be-
tween any pair of times. The physicality condition—that the
weight covariance matrix be positive definite—takes an es-
pecially simple form in this case, closely related to the con-
dition derived in[14] for stability of the mean-weight state.

In the limit of dense spacing of presynaptic spike times,
the expression for the weight covariance is further simplified.
In the special case whereE andL have the same functional
form, we find, surprisingly, that weights corresponding to
distinct presynaptic spike times are statistically independent.
This result can be expected to hold approximately for dis-
crete presynaptic spike times and for learning rules not quite
identical toE in functional form.

Numerical calculation of the equilibrium weight covari-
ance and postsynaptic potential covariance was carried out
for a class of examples relevant to the mormyrid ELL: both
E and L alpha function in form, withE excitatory andL
depressive pre-before-post. For the synaptic weights, off-
diagonal correlation is near zero fortL /tE=1 and tends to
increase in magnitude astL /tE moves away from 1. Values
of tL /tE near the boundary of the stable range show large
long-range anticorrelations. The correlation of the postsynap-
tic potential is everywhere positive fortL /tE=1, but long-
range anticorrelations develop astL /tE moves away from 1.
These numerical predictions were found to be in excellent
agreement with direct Monte Carlo simulations of the under-
lying random walk.

One of the basic results of this paper is that the variance
of the equilibrium weight distribution is proportional to
learning rate(i.e., to the magnitude of the weight changes
induced by individual spikes or spike pairs). A slow learning
rate leads to a small variance in equilibrium weight distribu-
tion and hence a more accurate negative image; a fast learn-
ing rate gives a large variance in equilibrium weight distri-
bution and a less accurate negative image. Detectability of
sensory objects is improved by a more accurate negative im-
age; thus to optimize detectability the learning rate should be
slow. However, if the fish’s own discharge is changing(due
to changes in water conductivity or body shape, for ex-
ample), then the negative image must be updated to remain
accurate. Such adaptability of the negative image favors a
fast learning rate, to allow the negative image to keep up

FIG. 6. Convergence of weight correlation to predicted equilib-
rium values in Monte Carlo simulations, forL /E=5.81,N=50, con-
finement parameter =0.2.(a) Time evolution of population-averaged
correlation; curves labeled by time,t /T. Dotted curve indicates pre-
diction. (b) Relative discrepancy between predicted and actual cor-
relation, vs timet /T. Dimensionless units.
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with changes in the discharge. The twin requirements of de-
tectability and adaptability are thus in direct conflict: any one
choice of learning rate represents a compromise between
them. A natural hypothesis is that the learning rate in the
mormyrid ELL is the slowest learning rate sufficient to pro-
vide adaptability of the negative image on time scales over
which the fish’s discharge varies in the wild. A faster rate
would not significantly improve adaptability and would de-
grade detectability; a slower rate would unacceptably de-
grade adaptability.

Verification of this hypothesis concerning optimality of
the physiological learning rate, and other quantitative predic-
tions of the present paper, requires further experimental
work. Direct observation of the equilibrium variance of syn-
aptic weights is probably not feasible, but measurement of
the equilibrium variance of the postsynaptic membrane po-
tential in MG cells is certainly feasible. Since sources other
than the equilibrium weight variance may also contribute to a
fluctuating membrane potential, such a measurement can
only provide an upper bound for the learning rate consistent
with our calculations. Nevertheless, if this upper bound were
too slow to be consistent with direct experimental measure-
ment of weight changes due to single spike pairs[3], then
our calculation would be inconsistent with experiment, and
the model would need to be modified. For a sharper test of

our quantitative predictions, further work must be done to
characterize other sources of variance in the MG cell mem-
brane potential, so that the contribution due to synaptic
weight variance alone can be isolated. We hope the specific-
ity and quantitative nature of our predictions are sufficient to
motivate such work.

Although certain details of our model are drawn from a
particular biological system, we have sought in the present
paper to lay the groundwork for the rigorous mathematical
analysis of equilibrium weight distributions arising from
STDP in other systems as well. The methods developed here,
in particular the random walk approach and the ability to
calculate with arbitrary learning rules and arbitrary postsyn-
aptic potential functions, are quite general and should be
extendable to systems other than the mormyrid ELL.
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