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Natural, everyday sensorimotor behaviors, such as rising from sitting, typically have
an intrinsic organization of several levels of analysis. Taking this intrinsic organization as
key to understanding neural dynamics is neither a top-down nor a bottom-up approach,
but rather a meshing of multiple centers and levels of analysis. Motor control requires body
dynamics that are consistent with physical dynamics, besides the more microscopic levels
of neural dynamics. The dynamics of separate movements have been investigated as if the
ends can be capped off, separated from the rest of the individual’s life. Is this dynamically
correct? Even chaotic behavior is deterministic. However, the mathematics of nonlinear
oscillations is not all of dynamics. This paper relates Bloch’s dynamical theorem to the
modular, conditional approach to sensorimotor and other neural functioning.

Bloch’s dynamical theorem lays a foundation for the piecewise study of structurally
accurate dynamics in theoretical neurobiology. Piecewise studies can be used as a mod-
eling option complementary to the methods of nonlinear oscillator dynamics. By apply-
ing Bloch’s theorem, dynamics of movements analyzed piecewise can be extended into a
smooth flow on any manifold, either as a whole or conditionally. Conditional dynamics
makes dynamical modeling options explicit, often depending on what variables the organ-
ism can control, and allows one to take different modeling options at different junctures in
analyzing the same phenomenon. For example, this approach allows the study of complex
motor control problems to be reduced to modular constructions using singularities and flow
lines. Dynamical contingencies are expressed using the mathematics of ordered structures.
This paper presents Bloch’s dynamical theorem and its relevance to model construction in
theoretical neurobiology. Specific examples, integrated into physiological and behavioral
context, are cited from the literature.
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1. Introduction

The success of dynamical systems mathematics in yielding insight into cardiology,

bursting in excitable cells, and rhythmogenesis in neuronal networks has raised hopes

of the broad applicability of similar mathematics in neurobiology. In particular,

dynamics has appeared to be a more biology-friendly approach, more conducive

to insight into such quintessentially biological phenomena as self-organization [45].

Bloch’s dynamical theorem on the extension of stable flows from restricted regions

[3] provides a powerful tool for structurally accurate analysis in neural systems.

This paper begins with a brief review of the applications of dynamical systems

mathematics in physiology as a context for presenting Bloch’s dynamical theorem

and its implications in neurobiology.

Rhythmic movements can be conceptualized as having settled into an attractor

in a dynamical space. For example, consider the waggling motion of a forefinger

rigidly oscillated about the metacarpo-phalangeal joint in the plane of the palm.

When both forefingers are waggled at the same time, they may have a variety of

phase and frequency relationships. Two phase relationships are preferred in the 1-2

Hz frequency range, 0 and 180 degrees out of phase (Fig. 1A), so that they can

be considered as a pair of attractors or potential wells (Fig. 1B) [43]. At higher

frequencies, 2.5-3 Hz, the 0-degree, in-phase movement is preferred (Fig. 1C), so

that the 0-degree potential well is much deeper or the 180-degree attractor basin

spills into that of the 0-degree phase relationship.

The patterns characterizing phase relationships are more complicated in locomo-

tor rhythms of quadrupeds; the patterns are called gaits, and depend upon frequency

as do the finger-waggling phase relation preferences. Mathematical symmetry con-

siderations introduce both specificity and mathematical depth to the modeling of

locomotor gaits [44, 7, 8]. Symmetry methods have been used elegantly to deter-

mine the minimal neural network with the appropriate symmetry to produce gait

patterns for animals with paired legs [13].

Oscillatory patterns are produced by a range of neural and other excitable sys-

tems, leading to a rich modeling literature using methods of nonlinear oscillator

dynamics. For example, oscillatory patterns in cardiac cells and tissue include phase

locking and period doubling [17] and low-dimensional chaos [6]. These cardiac stud-

ies benefit from the extensive data sets available on the steadily-beating heart. The

sensitivity of oscillatory behaviors and nonlinear systems methods suits them to

the study of underlying biochemical mechanisms, such as ion channels [5, 15] and

calcium handling [20, 21, 22].

Detailed phase plane models of excitability are characterized by a double attrac-

tor, in which the flow pattern is subject to large excursions from a steady state in

response to small perturbations (Fig. 2) [46, 11]. Dynamical studies have led to a

tentative taxonomy of bursting mechanisms in excitable systems affected by pro-

cesses on different time scales [39, 9]. These studies investigate the behavior of flows

within attractor basins.



February 25, 2005 13:30 WSPC/INSTRUCTION FILE mccollum04

Bloch’s Dynamical Theorem 3

180 degrees phase difference

0 degrees phase difference

A

C

B

po
te

nt
ia

l

0 deg. 180 deg.
phase difference

po
te

nt
ia

l
0 deg. 180 deg.

phase difference

Fig. 1. Phase relations of finger-waggling. A. Explanations of phase conventions. B. Potential wells
for low-frequency finger-waggling. Neither phase relation is significantly preferred over the other,
although 0 and 180 degrees are preferred over other phase relations. C. Change in phasing preference
at higher frequencies. The preference for 0 deg. phase difference is represented by a deeper potential
well.

The mathematics of dynamics offers a flexible tool for modeling with structural

accuracy both the attractors/semistable states and the flows between. Attractors in

neurobiology occur at several levels of analysis, including the subcellular, cellular,

neuronal population, and organism levels. On all these levels of analysis, the broader

study of dynamical systems investigates the overall nature of flows within which

attractor basins occur. For example, in Figure 3, the attractor basin of erect stance

is included in a flow in which some trajectories reach standing and some do not.

(It is the attractor basin and not the point sink that is important here, because

there are more detailed dynamics within the basin, as discussed further in section

IV.) The dynamical flow displays a range of alternative trajectories reaching the

standing attractor from the sitting position [40]. Sitting and standing are examples

of the many sensorimotor states an animal remains in temporarily in the course of its

behavior [19, 38, 37, 14, 24]. Although numerical aspects such as forces and lengths

may vary for different examples of a behavior such as standing up from sitting,

it is structural accuracy that is essential to understanding the behavior. That is,

the structure of the mathematics must reflect the organization of the physiological

system [26, 27, 28, 30].

Bloch’s theorem, presented in the next section (2), addresses the manifolds to

which flows may be extended, in terms of basic concepts of dynamics. Dynamical

flows include not only attractors, but also repellers and saddles (Fig. 4). Attractors,

repellers, and saddles each maintain invariant a particular set of points (convention-

ally denoted Λ) under the action of the flow. Besides the idea of invariance, which is
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Fig. 2. Phase plane diagram showing the qualitative current-voltage cycling behavior typical of
neurons in the FitzHugh-Nagumo model [11]. W and V are generalized coordinates representing
current and voltage, respectively, in the linearized case. With low voltage perturbations, current
perturbations increase modestly with voltage. At threshold (around.25), current perturbations sud-
denly increase nonlinearly. (Modified from [39])

a more general one in mathematics, the mathematics of dynamics considers metric

properties of the flow. Under the flow, an arbitrarily small neighborhood within a

nonwandering set (conventionally denoted Ω) returns and intersects itself repeatedly

and indefinitely. Nonwandering sets are the important ones, because other points

either wander off to infinity (in a non-compact manifold) or end up in an attractor

(especially within a compact manifold). Within an attractor basin, the flow is sta-

ble in the sense that it flows only inward, whereas both repellers and saddles are

unstable.

Following the presentation of Bloch’s theorem, section 3 presents further basic

theorems and a discussion of extension in neurobiology modeling. The final section

(4) presents options for using dynamics in neurobiology modeling.

2. Stable Flows Extended from an Isolating Block

Mathematics is based rigorously on definitions and axioms which may not apply

exactly in empirical sciences such as physics and neurobiology. For example, since

organisms are composed of molecules and smaller particles, it is not clear that conti-

nuity holds with microscopic exactitude. Therefore, continuity (and synonymously,

smoothness) and other empirically questionable concepts will not be addressed here.

“Compact” will be abbreviated, for biological purposes, to “finite”. On the other

hand, the mathematical constraint of structural stability is a useful one in identifying

mathematics appropriate for modeling empirical systems, especially biological ones:

a structurally stable flow is one which maintains its set of attractors, repellers, and

saddles and the flows between them under small perturbations. For example, a dy-

namical model of the sit-to-stand movement should be approximately the same with

small variations in the exact position of the center of mass of the body segments.
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Fig. 3. Phase plane diagram showing rising from sitting. The generalized angular variable, θ, is
defined such that sitting is at the left of the diagram and standing is at the origin. Some trajectories
lead into the standing attractor basin. On the vertical axis is the generalized angular momentum,
p, associated with. Adequate momentum is required to rise from sitting, as shown by trajectories
between the solid branches departing from the upper left-hand side of the diagram. Dashed trajec-
tories either return to a sitting position or bypass standing. The attractor and two saddle points
(empty circles) are surrounded by an oval boundary, which can be used as the boundary of an
isolating block (see text for description). The set of isolated tangent points of the isolating block
are marked with circled x’s.

It is also useful in biology to study an activity or phenomenon, such as erect

stance, in isolation from what went before or will come after. This ability is con-

ferred mathematically by an isolating block : a finite, bounded region U of the same

dimensionality as the manifold M in which it is embedded, with a flow ϕ on U such

that no flow lines within U are tangent at the boundary. Thus, the repeller and

saddle in Figure 4 are drawn in isolating blocks, as is the region within the oval

boundary in Figure 3. However, tangencies with one or both ends within the region

disqualify the region as an isolating block (Fig. 5). The “standing” attractor (Fig.

3) can be enclosed in an isolating block, as a separable phenomenon, to be followed

by a variety of alternative behaviors, such as sitting and walking.

Bloch’s theorem can be summarized as: Given a flow on an isolating block, the

flow can be extended to the rest of any manifold. Because, according to the first

corollary [3], this is true of any finite number of isolating blocks, this means that

any combination of attractors, repellers, and saddles can be specified separately and

linked together.

With technicalities included, the theorem is:

Bloch’s Theorem: Let Mn be a smooth closed manifold and let (Λ, ϕ, Un) be a

triple where ϕ is a Cr flow, r≥1, and U⊂M is an isolating block. Then there exists

an embedding of the flow ϕ into a smooth Axiom A flow on Mn. That is, there exists

a smooth flow ϕ’ on Mn such that:

(1) ϕ’ is Axiom A.
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A B

Fig. 4. Isolating blocks. A. Repeller. B. Saddle. At tangent points of the flow to the boundary,
marked with circled x’s, the flow lines are entirely external to the isolating block.

(2) ϕ’|U = ϕ.

(3) The nonwandering set Ω(ϕ’)∩U = Λ.

(4) The extended flow ϕ’ is Ω-stable for all n.

(5) For n = 2,3 and r>1, the extended flow ϕ’ is structurally stable.

Explanations: The n in Mn and Un is not used strictly as an exponent, but rather

denotes the dimensionality of the manifold. “Axiom A” is an adjective specifying the

relationship of the rest of the manifold to the nonwandering sets. Ω-stability is a lim-

ited form of structural stability, with stability under a small range of perturbations

limited to the nonwandering set Ω, as opposed to the whole manifold.

The proof of the theorem in two dimensions involves constructing a collar around

the boundary of the isolating block that makes the isolating block plus the collar

look like a repeller from the point of view of the rest of the manifold. This makes

the rest of the manifold into a manifold with boundary, where the flow is coming

in transversely to the boundary. On any such manifold, one can put a Morse-Smale

flow, that is, one for which

(1) the number of fixed points and periodic orbits is finite and each is hyperbolic

(like an attractor, repeller, or saddle);

(2) all stable and unstable manifolds intersect transversally;

(3) the nonwandering set consists of fixed points and periodic orbits alone [16].

A Morse-Smale flow is structurally stable. The proof of the theorem in higher di-

mensions uses similar techniques, except that in higher dimensions there are more

types of hyperbolic fixed points and other, much more complicated invariant sets Λ.

In two dimensions, it is sufficient to consider repellers, attractors, and saddles.

If Λ is an attractor or repeller, the boundary of U can be chosen so that the flow is

never tangent to it. If ϕ is a repeller, the extension can be made by simply continuing

the flow across the boundary. If ϕ is an attractor, it can be camouflaged by one or

more repellers, to look like a repeller from outside the collar (Fig. 6). If Λ is a saddle,

there will be tangencies to the boundary of the isolating block; the boundary must
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Fig. 5. Not an isolating block. Two tangent points of the flow to the boundary are shown. At
one, the flow is internal to the boundary. At the other, the flow exits. Both of these flow lines are
disallowed for an isolating block.

be chosen so that they are external, as in Fig. 4B. Still, to make absolutely certain

that all the requirements are met, a saddle requires a more elaborate collar than an

attractor (Fig. 7).

It is this type of extension that allows, for example, the sit-to-stand movement

to be extended to a walk, handshake, or suitcase-picking-up movement. The denial

of Bloch’s theorem would say something like: every movement you make affects the

rest of your life and the rest of the universe. That may be to some extent true, but

Bloch’s theorem allows a great deal of freedom, both of action and of neurobiology

modeling.

3. Extension in Neurobiology Modeling

The freedom to extend the flow on an isolating block gives modellers the freedom

to (1) characterize behavioral phases in isolation and then (2) join them with other

behavioral phases. According to Bloch’s theorem, once a modular movement is un-

derstood, if it can be enclosed in an isolating block, then it can be extended to

other movements with a large amount of generality. Thus, it is not necessary to

understand the dynamics of a system for all time, in order to characterize its local

dynamics.

It is customary in physics to write dynamical equations that are doubly infinite

in variables such as time, position, and momentum, that is, for which the variables

extend to both negative and positive infinity. However, important topological the-

orems in dynamics require the state space to be a compact manifold, finite like a

sphere or a torus, rather than an open space like R
n. These theorems, such as the

Poincaré-Bendixson theorem and Peixoto’s theorem, are powerful tools for charac-

terizing local dynamics [15, 1]. (See Appendix for the Poincaré-Bendixson theorem

and Peixoto’s theorem.)

Specifically, the Poincaré-Bendixson theorem limits a modeller’s attention to a

very restricted set of attractors, repellers, and saddles. For example, [40], in mod-
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Fig. 6. Collar around an attractor within an isolating block. The inner circle is the boundary of
the isolating block. The outer circle is the outer boundary of the collar.

eling the sit-to-stand movement, constrained the movement to a capped cylinder

(topologically equivalent to a sphere), so that there were no limit tori, only limit

points or limit cycles.

In the case of the sit-to-stand movement (Fig. 3), there are two saddles and

one attractor. The attractor, at the position of erect stance, represents the postural

adjustment mechanisms that maintain humans in the passively unstable standing

position. Preliminary physical calculations attest to two saddles, one dividing the

sit-to-stand movement from a failure in which the trajectory returns to the chair

from want of momentum, and one on the far side of the erect stance attractor,

dividing sit-to-stand movements from trajectories unsuccessfully approaching erect

stance from the opposite direction. In order to know the combinations in which the

attractor and saddles connect, another theorem is applied that assumes a compact

manifold, Peixoto’s theorem. According to Peixoto’s theorem (Appendix), there are

no connections between saddle points in a structurally stable flow.

Therefore, there are only three ways to connect the attractor and the two saddle

points in a structurally stable flow: both saddles connecting to the attractor (Fig. 3),

only the chair-side saddle connecting to the attractor (Fig. 8A), and only the far-side

saddle connecting to the attractor (Fig. 8B). Mathematically, the first two are the

only structurally stable dynamical flows leading from the chair to the erect stance

attractor. It is to the advantage of neural control to choose a structurally stable flow,

to avoid the vagaries attendant upon a movement that requires excessive precision.

Therefore, these two flows specify the topology of the sit-to-stand movement.

The conclusion that there are only two dynamical flows for the sit-to-stand

movement was made possible by limiting the range of momentum and consider-

ing a capped cylinder rather than a doubly-infinite cylinder. However, one may ask

whether capping the cylinder – restricting attention to a finite area of the state

space – leads to unacceptable dynamical consequences elsewhere, in the subject’s
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Fig. 7. Saddle with a collar, extended to a repelling flow.

past or future. Bloch’s theorem answers that question: No. Bloch’s theorem allows

modellers to restrict attention to a finite area of a state space, in order to analyze it

thoroughly, and then join the solution to solutions for other behaviors. The dynamics

of multiphase movements are thus an interdependent combination of the dynamics

of single movement phases, such as the sit-to-stand movement. This approach al-

lows the study of complex motor control problems to be reduced to “tinker-toy”

constructions using singularities and flow lines.

Just as for motor behaviors, modellers can restrict attention to subsets of a

neural system, including a single neuron. The flexibility in modeling is reflected in

the variability of combinations in which movements occur. For example, the most

perfectly swung bat may not contact the ball; if it does make contact, the ball may

yet go astray. Similarly, a neuron’s activity may and may not arouse a response in

the network to which it belongs, depending on the overall organization of the other

neurons. For example, the dorsal gastric neuron in the stomatogastric ganglion of

decapod crustaceans fires in a pattern to influence the gastric mill. It may fire

alone. Alternatively, it may be an integral part of a network firing in concert to

influence the gastric mill [10]. This observation may suggest alternative options for

modeling: rather than attempting one grand model including both the neuronal and

the network levels, a modeller may choose different methods to give insight into

neuronal behavior and network behavior, then combine the results.

4. Options for Neurobiology Modeling

At least two complementary options have been used in structurally accurate neu-

robiology modeling: system as oscillator and system as navigating and interacting

with dynamical conditions. For example, the locomotor step cycle of one leg has

been considered as a limit cycle obeying oscillatory dynamics under particular con-

straints [34, 4] (Fig. 9A). An alternative point of view has been to separate neural

control from physical conditions. Without neural mechanisms of posture, standing
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Fig. 8. Two more possibilities for connecting two saddles and an attractor in a structurally stable
flow, in addition to Figure 3.

on a leg is unstable and can be represented as a repeller. A human locomoting, then,

is navigating an alternation of two repellers (Fig. 9B). Achievement of independent

locomotion has been modelled as the construction of a strategy for maintaining up-

right stance and forward motion under these physical conditions, using principles

such as the conservation of potential plus kinetic energy and the conservation of

angular momentum [32].

The two points of view are equally valid and yield different insights. They can be

used at any level of analysis. Nervous systems are complex; we must expect multiple,

complementary, mathematical points of view in theoretical neurobiology.(See [42],

for another approach to discrete movements, not discussed here.)

4.1. System as oscillator

Contemplating celestial motions, Newton assumed that planetary orbits arise under

the influence of an attracting force. A similar assumption is made about cyclic

behavior in biology: that the behavior arises under the influence of an attractor,

which is therefore the main subject of modeling. This approach has the advantage

of using powerful mathematical methods that have become well established, largely

because of the influence of Newtonian mechanics.

Some of the important models in cardiology and cell physiology that are based

on this point of view and use the mathematics of nonlinear oscillators have been

mentioned in the Introduction. These models directly represent the periodic behav-

ior of hearts and cells. There are similarities and differences between these models

and efforts to probe neural control of eye movements using an imposed sinusoid. In

two standard paradigms, an animal attempts to visually fixate a target (humans,

by instruction; non-humans, after training). The sinusoid is imposed either as a tar-

get motion or as a motion of the animal’s head. In each case, the eye movement is

analyzed as a function of the imposed sinusoid, using a Laplace transform, trans-

fer function approach to constructing differential equations (for example: [2, 12]).
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Fig. 9. Options for modeling locomotion, illustrated by schematic diagrams. A. As an oscillation.
Although the cycle shown is parameterized by shank and thigh angles to vertical, variables used
in experimental and theoretical studies may differ. B. As the navigation of physical dynamics. The
unstable point of erect stance on one leg is represented by a simple repeller, one for each leg, right
and left. The dashed line joins the two repellers through a space whose variables are unspecified in
the diagram.

Like the cardiology and cell physiology models, these oculomotor control models

use powerful and well- established mathematical methods. However, they are not

direct models of the behavior of interest, but attempts to probe neural behavior not

available for direct observation, by imposing sinusoids and other particular condi-

tions. Complementary models will be required to give insight into the dynamics of

the neurons and neuronal populations involved in oculomotor control and into the

dynamics of non-oscillatory and voluntary eye movements.

4.2. System as navigating and interacting with dynamical

conditions

Just as sinusoids can be imposed as conditions on eye movement control, so can

non-sinusoids be imposed as conditions. Conditional dynamics makes dynamical

modeling options explicit and allows one to take different options for different aspects

of the model, depending, for example, on which variables the organism can control. In

order to make dynamical modeling options explicit, conditions are expressed using

algebraic relations: inclusion to express “governed by” and contiguity to express

“lead to” [23, 24, 25, 29, 27, 28]. For example, rising from sit to stand changes the

sensorimotor state of the organism, from a sitting to a standing state. By entering

a subset of the sitting state (producing adequate forward momentum), a person

can take advantage of the range of dynamic trajectories that lead to standing (Fig.

10). These trajectories are governed by the overall dynamics of the sit-to-stand

movement, which includes both the sitting and standing positions.

Included in the standing attractor basin, at a more detailed level of modeling

than Figure 3, is a system of postural adjustments depending on and regulated by

motor, sensory, and environmental conditions. An example of a motor condition
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would be the position of the feet: with the feet side by side, a sideways perturbation

could be countered by differential pressure on the two feet, whereas with one foot

ahead of the other, the postural adjustment countering a similar perturbation would

be a more essentially hip movement. An example of a sensory condition would be

whether visual cues are available and reliable as orientation cues. An example of an

environmental condition would be whether the support surface is slippery, like ice,

or whether it affords friction so that shear forces can be relied on as reaction forces

to postural adjustments, especially those involving hip movements. The postural

adjustments in each of these conditions, such as those involving hip or ankle torque,

can be analyzed piecewise, according to Bloch’s theorem, and then extended to lead

to other movements.

4.3. Modeling when dynamics is unknown or complicated

The dynamics of neuronal populations, circuits, and networks are often inadequately

understood for direct modeling. However, a great deal may be known, piecewise,

about various aspects of the organism, the behavior mediated, and individual neu-

rons. Then conditional dynamics can be used to characterize the system as a whole,

leading to implications about relationships between the parts.

A great deal is known, for example, about the stomatogastric ganglion of decapod

crustaceans and the food-processing behaviors it mediates (for reviews, see [18]). The

neuronal and food-processing behaviors have been combined in one model, using

conditional dynamics [41].

By expressing dynamical contingencies using the mathematics of ordered struc-

tures, plus contiguity, conditional dynamics introduces mathematical structure for

both characterizing and analyzing control structures. Control structures may switch

controlled variables, movements, and sensory cues for perception and movement, de-

pending on conditions such as those listed above for standing postural adjustments.

A distributed control structure for such a conditional system of controls must be

organized to produce the observed smoothness of control. For human postural ad-

justments, that level of smoothness is very high. Therefore, postural adjustment

control structures have been modelled to satisfy constraints that ensure smooth and

appropriate switching between different dynamical responses [33, 25, 27].

The control system of standing postural adjustments contain only some of the

discrete states presented in the literature. Sleeping and waking are two distinct

states we switch between. Prochazka [38, 37] has characterized discrete states of

motor control and suggested that the switching between them may be controlled by

a conditional logic [36]. reported Switching between sensorimotor states in fish was

reported in [19]: a vestibularly-dominated state identified by tilting in vestibular-

damaged fish and a visually-dominated state with no tilting, which occurred when

the fish swam toward food. Neural switching of reference frames in the hippocampus

have recently been reported [14], contingent on the movement and training of the

animal. Although these systems may not be tractable using nonlinear oscillator ap-
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Fig. 10. Sit-to-stand movement as a transition between states, governed by dynamics. This di-
agram expresses the conditional dynamics of transitions between sitting and standing, and is to
be read as a mathematical expression, like an equation. The conditional dynamics is expressed as
relations between dynamical regions, each denoted within a box. The dynamical flow governing the
sit-to-stand movement is shown at the top of the page, with the range of angular momenta leading
to standing shaded. The phase plane includes both the standing state (the attractor in the mid-
dle) and sitting (the left-hand edge). Inclusions are denoted by solid lines, as is conventional in the
mathematics of ordered structures, with the including set higher on the page. For example, included
in the region labelled “sitting” is the subset of sitting that has angular momenta within the range
leading to standing. This subset is called a “trigger region” because it leads to a state transition,
between sitting and standing. Contiguity is denoted by dashed arrows, such as the one leading
from the sitting trigger region to the standing state. An analogous trigger region will be revealed
by dynamical analysis of the stand-to-sit movement; here, it is indicated by “by chair, on heels”.
Although the sit-to-stand phase plane includes the trigger region for the stand-to-sit movement,
it does not represent the necessary dynamical flow. The two states, sitting and standing, plus the
two trigger regions, form a dyad, a basic structure for analyzing control structures[24,25,27]. The
dyad is a minimal, unambiguous structure specifying two states and trigger regions for transitioning
between them.
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proaches to modeling, they may yet be open to piecewise modeling using conditional

dynamics.

Neurobiology is a rich field. It is not to be expected that one mathematical

approach will solve all problems. (And numerical computation alone certainly will

not, even though it is currently popular.) Rather, we can aspire to create a collage

of intersecting, structurally accurate mathematical characterizations, that shift to

give complementary insights from different points of view. Bloch’s theorem lays a

foundation for piecewise analysis of dynamical behavior at any level of analysis and

its extension to connect with interdependent behaviors.

Appendix: Dynamical Theorems

Poincaré-Bendixson Theorem: For vector fields on compact, orientable, two-

dimensional manifolds, limit sets must be limit cycles, limit points, limit tori, or

combinations of points and connecting arcs. (A non-orientable manifold has a twist,

like a Möbius strip or a Klein bottle. A sphere is orientable.)

Peixoto’s Theorem: A smooth vector field on a two-dimensional compact mani-

fold is structurally stable if and only if:

1. The limit sets consist only of fixed points and periodic orbits (limit cycles).

2. The number of fixed points and closed orbits is finite and each is elementary.

3. There are no connections between saddle points.

Furthermore, if the manifold is orientable, structurally stable flows are generic in

the space of all two-dimensional flows.
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