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SYSC 512 Quantitative Methods of Systems Science

FPortland State University
Credits: 4
Instructor: Patrick Roberts

Time and Location
Mon. & Wed. 4:00-5:50
Harder House 104

Patrick Roberts: robertpa@ohsu.edu
Office: HH 03, Mon & Wed 1:00 PM -2:00 PM.
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ScSy 512: Quantitative Methods of Systems Science
Class outline: (20 classes during 10 weeks.)

Class lectures will present examples of how quantitative methods are applied to systems.
Homework excercises will focus on mathematical technigques.

Part I: Dynamics. (5 classes)
Key Ideas: Non-linear differential equations, continuous and discrete;
Linearization, eigenvalues and eigenvectors,; Stability and Lyapunov functions.

Part 1I: Optimization. (5 classes)
Key ldeas: First and second order conditions, Lagrange multipliers, variational calculus.

Part lll: Uncertainty. (5 classes)
Key ldeas: Distributions for discrete and continuous random variables.

Bayes rule. Estimation and bias variance trade-off.

Software: The numerical exercises can be solved using your favorite software,
but the supparted package will be Matlab. PSU has a site license for on-campus use.
Octive is a free software package that uses a syntax similar to Matlab.
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Desired outcomes:

1. To help students understand how quantitative methods can be used to analyze,
explain, predict, and control the behavior of systems.

2. To provide students with hands-on experience using current research toals to investigate
the concepts underlying these quantitative methods.

3. To help students to develop an intuition for the dynamics of simple and complex sytems.

02_outcomes.psd

Evaluation:

1. Weekly homework: exercises using quantitative techniques (scored 0-1).

2. Exams, midterm and final (scored on a 0-4 scale).
Final grade: 1/3 homework, 2/3 exams

Text: There will be 3 texts, one for each section of the course.
» Dynamical Systems with Applications using MATLAB (2004) Stephen Lynch

+ Optimization Theory with Applications (1987) Donald A. Pierre
» Probability Theory: A Concise Course (1977) Y.A. Rozanov

| will also provide the sources | use for the lectures, and suggest further reading.

Class Website:
http://www.sysc.pdx.edu/classes/sysc512/

03_evaluation.psd
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Why quantify systems?

To understand
To predict

To control

To manage
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A tool for understanding complex systems:
Higher-order brain function

* Provides building blocks for biologically relevant neural

network research

B Tra motor unit
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Neural prosthetic control signals from plan
activity, Shenoy et. al., NeuroReport, Vol 14(4),
2003.
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Helps us to predict functional
patterns of neuronal firing

Reach direction Baseline, Plan
or Go
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Reach here

- Baseline or Go
Reach now

Interpreter

Transition rule: time,
time-consistency, or go

Plan

*This transition causes a high-level cognitive control signal to be
issued stating: reach here (from direction classifier), reach now.

Fig. 2. Computational architecture for generating control signals from
PRR plan activity. (a) Spike rasters from one trial for each of 4] PRR neu-
rons. The goal visual target occurs at 0 ms. The onset of arm movement
occurs after 1100 ms (not shown). (b) Classifiers use neural activity from
fixed-width sliding analysis windows to estimate the direction of arm
movement (direction classifier) and the current neural/behavioral period
(period classifier). () The interpreter receives the stream of period clas-
sifications (i.e., baseline, plan or go) from the period classifier and the
stream of movement direction dassifications (e.g. downward reach) from
the direction classifier. The interpreter consists of a finite state machine
that transitions among three states (baseline, plan and reach) according
to the period dassification at each time step.
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A tool for neuroprosthetic device research
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Manage and Improve Complex Systems
Without Breaking Them

Clawback

,/\M s
Orphaned
Pﬂﬁﬁuls

ﬂerw c» p,,,,‘,,

‘_»\
/ \ I m,.m,,,
Policy ( Traming and

afracinenes
-— I,A"
coachng quaity —/
R

appropratenes s
| for customer

\—F.n

—
- + — fice
. -
person skils — - ﬂ--’
g Setespareois tme /
skill / vailable lor sating Average
Vi sdminatiaten case sze
Ability 10 ofer
hegh surrender —

value sarly on ¢ totarget -
m;r. nat wonh ——
— ndraduals

09_manage.png



SySc 512 Slides 04/02/07

Part 1: Dynamics

Apr 2 (01) 2-Dimensional flow geometries. HW1 ™ et

Apr 4 (02) Discrete dynamics & Mappings.

Apr 9 (03) Diagonalization & eigenvalues. HW2

Apr 11 (04) Higher dimensional dynamics & linearization.

Apr 16 (05) Stability & Gradient systems. HW3
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Dynamical Systems with Applications using MATLAB (2004) Stephen Lynch
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Example 1: The Human Brain

“The most complex system in the known universe."

Being and Value: Toward a Constructive Postmodern Metaphysics, by Frederick Ferre (1996)

11_brains.psd
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Infinitely More Complex than the Human Brain:
Two Brains in Love

12_2brains.psd

Quantify a System’s Dynamics:
Step #1:“Draw a distinction”

Laws of Form, by George Spencer-Brown (1969)
13_distinction.psd
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Quantify a System’s Dynamics:
Step #2: Specify an example

Romeo and Juliet, by William Shakespeare (1594)

Strogatz, S. H. 1988. Love affairs and differential equations. Mathematics Magazine 61:35
14_specify.psd

Quantify a System’s Dynamics:
Step #3: Quantify the salient features

The Dynamics of Romeo and Juliet

Homeo’s feelings for Juliet: R(t)

Juliet’s feelings for Romeo: J(t)

"t

05T

Strogatz, S. H. 1988. Love affairs and differential equations. Mathematics Magazine 61:35
15_quantify.psd
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The Dynamics of Romeo and Juliet

Case #1: Independent dreamers
Drift towards indifference

dR(t) dJ(t)
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The Dynamics of Romeo and Juliet
Case #1: Independent dreamers
“Absence makes the heart grow fonder”
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Digression: Solving differential equations
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The Dynamics of Romeo and Juliet
Case #2: Two to Tango
Fickle Romeo and Juliet
dR(t)
— = —R(t)— J(t
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Strogatz, S. H. 1988. Love affairs and differential equations. Mathematics Maga‘z.-'né. 6{11:35'
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General Form of Linear Dynamical Equations
2-Dimensional dynamics

d%@ = a(Ro — R(t)) — bJ(t)
di_f) = d(Jo— J(t)) + cR(t)

i) = 1o a2

Ordinary, homogenous, linear, first-order differential equation:

r = Ax

20_RJ2_matrix.psd

The Dynamics of Romeo and Juliet

Case #2b: Two to Tango
Fickle Romeo, modulated by the intensity of Juliet's feelings

% = R(t)(1—J(t)?) - J(t)
dJ(t) _
0

Filt) frel) & J1Y (blue)
\ |Io I.. o — [
(m— — T
=l J
=
Tl

21_RJ2_oscil.psd



SySc 512 Slides 04/02/07

The Dynamics of Romeo and Juliet

Case #2b: Two to Tango
Fickle Romeo, modulated by the intensity of Juliet’s feelings

% = R)(1— J(t)?) — J()
dit) e
O

o . E ; : J;
Eliminate Romeo to obtain second-order differential equation in Juliet:

azJ(t)  dJ(t)
a2

Van der Pol oscillator yields a stable limit cycle.

(1= J(1)%) = J(®)
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Quantify a System’s Dynamics:
Step #4: Classify the Dynamics

The Dynamics of Romeo and Juliet
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The Classification of 2-Dimensional Dynamics
Piexoto’s Theorem
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I. Dynamics: 2-Dimensional flow geometries

teps to quantify a System’s Dynamics:

Step #1:“Draw a distinction”

Step #2: Specify an example

Step #3: Quantify the salient features i |
Step #4: Classify the Dynamfcs
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