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Abstract

First-order Wiener kernels are calculated from extracellular and intracellular recordings

of Direction Selective (DS) ganglion cells and used to predict spike bursts, which are

compared to spike-train predictions from a Hodgkin-Huxley (HH) like model [T. F.

Weiss, Cellular Biophysics Vol. 2 (MIT Press, Cambridge, MA, 1996)] of the cells created

in Mathematica. A reverse correlation method is used to calculate the kernels [P. Dayan

and L. Abbot, Theoretical Neuroscience (MIT Press, Cambridge, MA, 2001)], which are

convolved with the stimulus to estimate the response. Approximately 75% to 85% of

the bursts can be predicted using this method, as demonstrated in Chapter 5.

The HH spike-train predictions are generated by transforming the stimulus into a

membrane current. This method is motivated by the hypothesis that the DS cells re-

spond linearly to stimulus velocities. The HH predictions are generally less successful

than the kernel generated burst predictions. The model remains to be improved through

the optimization of the method of stimulus transformation and the electrical parameters

used in solving the HH equations.

The stimulus consists of an edge between a dark side and a bright side of a computer

monitor that moves with random velocities along the axis parallel to the DS cell’s pre-

ferred direction to stimulate the neurons. This stimulus was devised as a likely candidate

to generate a high signal-to-noise ratio. Unforeseen problems arise, however, due to the

temporal autocorrelations of the edge.





Chapter 1

Introduction

As much as possible of the brain is extracted through the nostrils with an

iron hook, and what the hook cannot reach is rinsed out with drugs. [1]

When Herodotus observed the Egyptians disposing of the brain without giving it a

second thought, he could not have known that neuroscience, the study of the nervous

system, would become the focus of an entire legion of scientists over two thousand years

later. The brain was handled with utter disregard relative to the heart, which was pre-

served and left in the corpse because it was believed to be the seat of the mind. This idea

was championed by the likes of Aristotle and therefore dominated until Galen presented

evidence from dissections and experiments that hinted at the actual significance of the

brain in the second century . Since this time, curious minds have relentlessly explored

the functions responsible for cognition, memory, and the intellect in ever-increasing

numbers [2].

The human nervous system is undeniably one of the most advanced computation sys-

tems fathomable, and its extreme complexity often impedes even the most well-designed

research. Such complications have motivated the integration of numerous academic

fields including the physical sciences, mathematics, psychology, and the biological sci-

ences. Today, physicists find that the mechanisms responsible for intercellular commu-

nication are as rich and challenging to their quantitative skills as radiation from celes-

tial bodies or exotic subatomic particles, much to the benefit of both neuroscience and

physics. The theoretical tools that a physicist brings to the table are both numerous

and invaluable. Classical electrodynamics is necessary to model the electrical properties
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of cells. Solid state theory is particularly relevant to the dynamics of complex proteins.

Additionally, important experimental techniques such as fluorescence resonance energy

transfer (FRET) and evanescent wave microscopy, which are used to view sub-cellular

processes, can only be fully explained in the language of advanced physics. In 1991 the

esteemed physicist Erwin Neher was the joint recipient of a Nobel Prize for “discoveries

concerning the function of single ion channels in cells.” Perhaps the most significant

contribution of physicists, however, can be found in the unique way in which they ap-

proach new problems.

Arguably, physics is an attempt to explain observable phenomena, which are often

rather complicated, in terms of basic principles and unambiguous mathematics. As part

of the scientific process, such principles are often tested by new observations and may

need to be altered to explain unexpected results. Similarly, new theories may neces-

sitate the development of new experimental techniques for the purpose of validation.

Thus experimentation and theory are responsible for motivating and inspiring mutual

advances. For this reason, the mathematical tools wielded by a physicist may be invalu-

able in a field such as biology where there is a perceived de-emphasis on the theoretical

component. Referencing an allegorical glass of wine, Richard Feynman reminds us of

the importance of allowing our disciplines to intermingle,

If our small minds, for some convenience, divide this glass of wine, this

universe, into parts – physics, biology, geology, astronomy, psychology, and

so on – remember that nature does not know it! So let us put it back together,

not forgetting ultimately what it is for. [3]

This thesis is partially intended to serve as an example of the intertwining of disci-

plines advocated by Feynman. Characterizing the function of a nerve cell, or neuron,

is a challenging task with several possible approaches. Many of these approaches hinge

on observation of the chemical interactions that occur within the cell. Such research,

which may more accurately be classified as biochemistry rather than physics, tends to

yield results that are more qualitative in nature.

A different approach is necessary for the desired quantitative results. For the purposes

of this thesis project, neurons are considered in the language of linear response theory

[4], and the biochemical processes that occur within the cells are discussed only to de-

velop a cogent background. In this perspective, a neuron is a system that produces an
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approximately linear response to an external perturbation. Specifically, a neuron is per-

turbed by a time-dependent visual stimulus and responds with a measurable alteration

in its electric signal. Here, a “stimulus” is understood to be a specific, mathematically

describable feature of the environment that is known to elicit a response in the neuron.

If the stimulus is known, and the response is recorded, then the relationship between the

two can be derived using the tools of theoretical physics. Apparently, the “job” of the

neuron is to describe a part of the physical world using a time-dependent function.

This document will focus on the mathematical strategies used to develop a quanti-

tative theory of stimulus encoding in retinal ganglion cells, the neurons that transmit

visual information from the eye to the brain. In order to appreciate the biophysical prin-

ciples that underly the response function, it is necessary to develop a picture of the brain,

and more generally the entire nervous system, as a network of interacting nerve cells, or

neurons. It is equally necessary, then, to discuss the processes by which neurons interact.

Because the work discussed here pertains to a specific cell-type found in a relatively small

subsystem within the greater nervous system, a brief discussion of the retina is required

to provide a context for the discussion of retinal ganglion cells. The cells themselves will

necessitate a somewhat more detailed and elaborate introduction due to the specific char-

acteristics that differentiate retinal ganglion cells from other cell types. Several sub-types

of retinal ganglion cells must also be discussed in order to complete the picture.

1.1 The Nervous System

The nervous system, which includes the brain, the spinal cord, and the peripheral ner-

vous system, is composed of two main types of cells: neurons and the much more nu-

merous glial cells [5]. Of these two cell types, neurons perform most of the primary

functions associated with the nervous system. Sensory functions, motor functions, and

functions associated with cognition are carried out by specific sets of specialized neurons,

which exchange excitatory and inhibitory signals with one another. Each type of neuron

uniquely processes the signals it receives from other neurons and generates a new output

determined by all of the inputs it has received in a given time frame. The sub-networks

formed by these specific sets are all connected, directly or indirectly, to make up the

nervous system.
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From a particular, simplified perspective, then, the nervous system is essentially a net-

work of intercommunicating cells. Correspondingly, a staggering number of researchers

have considered it worthwhile to pursue an understanding of the mechanisms by which

neurons generate, conduct, and exchange signals. Technological advances of the twen-

tieth century, such as increasingly sophisticated microscopes and computers, catalyzed

major successes in the field of neurophysiology, and ongoing research aims to elucidate

these processes down to the sub-molecular scale and in novel contexts. Throughout the

major advances in this field, the central importance of the relationship between structure

and function has remained constant. As an example, changes in protein conformation

are believed to be responsible for ion flow through the cellular membrane [6]. A brief

discussion of neuronal structure is therefore necessary rather than digressive.

Although they tend to vary greatly in size and shape, most neurons exhibit several

structural features that distinguish them from other cells. Most notable of these features

are the long, thin protrusions from the central neuron body, or soma, which often branch

out into multiple fingers. Two distinct varieties of these protrusions exist: dendrites and

axons. The aptly termed dendrites receive signals from other cells at their termini. These

signals are conducted along the length of the dendrites to the soma, where all incoming

signals are integrated and processed to produce an outbound signal. The output is then

conducted along the cell’s axon and passed on to other cells at the ends of the axon. The

singular axon generally has multiple terminals and a smaller cross-section than each of

the numerous dendrites. A Purkinje cell is shown in Fig. 1.1 as an example of typical

neuronal structure. It is important to note, however, that like the cells themselves, the

axons and dendrites come in a wide variety of sizes and shapes.

Until the mid-twentieth century, physical boundaries between neural connections

were not directly observable. That is, it was not at all obvious that the dendrites and

axons of neighboring cells were not continuous with one another. Consequently, the

preceding decades provided the setting for an intense polemic between proponents of

the reticular theory, which described the nervous system as a continuous mesh of fibers,

and advocates of the neuron theory. Once sufficient evidence supporting the neuron

theory had been amassed, thanks in large part to the work of Santiago Ramón y Cajal

[7], the focus of the neuroscience community shifted to the processes that occur at the

junctions of two cells to facilitate intercellular communication. A connection between
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FIG. 1.1: The Purkinje cell exemplifies typical neuronal structure. The branch-like
structures are dendrites. The large structure below the dendrites is the cell body or
soma. The small protrusion to the bottom right is the neuron’s axon. [Adapted from
www.ucl.ac.uk/lifesciences-faculty/research/neuro/, 2004.]

an axon terminal of one cell and a dendrite of another cell is called a synapse. The region

between the pre- and post-synaptic membranes is referred to as a synaptic cleft in the

case of chemical transmission and a gap junction in the case of electrical transmission. A

diagram of a synapse is shown in Fig. 1.2.

The main topic of discussion will be the generation of signals that are conducted

along the axon to the pre-synaptic terminals, particularly in retinal ganglion cells. These

signals, which are present in most types of neurons, are known as action potentials1 or

spikes for the sake of brevity. Action potentials are regenerative, non-attenuating electrical

pulses. The word action is used to differentiate the brief (generally on the order of a mil-

liseconds) voltage spike from the resting potential, which describes the negative electric

potential of the materials inside of a resting neuron relative to the extracellular medium.

The action potential arises when the cell becomes depolarized due to an ionic flux across

the cellular membrane. The existence of the associated current was first suggested in

1Italics are used to emphasize terms that are centrally important to the main concepts in this document.
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FIG. 1.2: Diagram of a synapse. The sending, or pre-synaptic, neuron releases neuro-
transmitter into the synaptic cleft, where it is detected by receptors on the receiving, or
post-synaptic, neuron. [Adapted from www.nap.edu, 2004.]

1791 by an Italian physicist named Luigi Galvani, whose experimental observations led

him to propose a principle he called “animal electricity.” Galvani’s simple experiment

consisted of applying a current to the exposed tissue in the medulla of a live frog. The

applied electricity caused the muscles in the frog’s legs to contract [8]. From this, Gal-

vani concluded that muscles and nerves contained electricity. Galvani’s contemporaries,

including the eminent scientist Alessandro Volta, questioned the bold hypothesis. Volta

recognized that the frog’s leg simply acted as a galvanometer responding to the the cur-

rent initiated by the contact of metals used in the experiment [9]. It was apparent that

the animal responded to externally applied electricity, although insufficient technology

left Galvani unable to prove the existence of animal electricity by way of measurement.

In 1827 Leopoldo Nobili became the first to report measuring the current in frog tis-

sue using an instrument of his own invention. The device, called an astatic galvanometer,

was able to measure with a previously unobtainable sensitivity because it was designed

to cancel the effect of Earth’s magnetic field. This effect was achieved by mounting two

needles in parallel, but with opposite poles adjacent to each other. The system has a

net magnetic dipole moment of zero and therefore feels no net force from the Earth’s

magnetic field. When one of the needles is placed inside the coil carrying the current

being measured, it experiences a torque, while the other needle is unaffected [10]. This
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design permits the galvanometer to reach sensitivity levels sufficient for measuring the

tiny ( ∼ 1 nA) currents in living tissue.

The early measurements of biological currents mark the beginning of the field of

electrophysiology, a field that is of central importance to the topics discussed in this

thesis. Revelations subsequent to Nobili’s experiment regarding the generation of action

potentials will be discussed at length in Chapter 2.

1.2 The Retina

The voltage spikes that constitute the data for this thesis are created by retinal ganglion

cells, a specific cell type in the retina. The retina, a thin tissue ( ∼ 250 µm) at the

back of the eye, possesses several attributes which make it a particularly attractive system

to researchers. Most importantly, it is easy to control the input signal and possible to

measure the output signal. The input is simply patterns of light, and the output consists

of trains of action potentials from ganglion cells. Additionally, only five major classes

of cells are involved in processing and conducting the signals, which makes the retina

a relatively simple system. These five cell types are the photoreceptors, horizontal cells,

bipolar cells, amacrine cells, and ganglion cells.

Although only the ganglion cells are of primary importance to this document, the

organization of the retina provides a context for understanding the function of the gan-

glion cells and is quite interesting in itself. For the most part, each cell type constitutes

its own physical layer in the tissue, as depicted by the primitive rendition of the retina in

Fig. 1.3. The backmost layer relative to the lens contains the photoreceptors, which are

responsible for detecting light. Rods and cones, the two main varieties of photorecep-

tors, are named for their distinctive shapes. The other cellular layers, which lie between

the photoreceptors and the lens, must therefore be optically transparent. The frontmost

layer contains mostly ganglion cells. The long axons of the ganglion cells are bundled

together to form the optic nerve, which carries spikes from the retina to the brain.

A surprising amount of information processing occurs within the retina. Photorecep-

tors contain an abundance of the pigment rhodopsin, which undergoes a conformational

change when it absorbs a photon [11]. This causes a cascade of chemical events within

the cell that results in the generation of an electric signal. Bipolar cells convey these
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FIG. 1.3: A simplified diagram of the retina. Note the direction of the light, which
passes through several cell layers before being absorbed by the photoreceptors. [Adapted
from www.catalase.com, 2004.]

signals to the ganglion cells directly and indirectly. Direct signal conveyance generally

occurs between ganglion cells and the photoreceptors nearest to them. Indirect con-

veyance involves horizontal cells and amacrine cells, which process information coming

frommore distant photoreceptors. Bipolar, horizontal, and amacrine cells will be referred

to collectively as interneurons throughout this thesis.

Ganglion cells receive the incoming signals and produce spike trains that contain

precise temporal and spatial information about the patterns of light initially detected by

the photoreceptors. There are numerous types of ganglion cells, each of which conveys

information about a specific feature of an image detected by the photoreceptors [11].

The next section of this chapter, however, will focus on the specific type of ganglion cell

that is analyzed in the present work.

1.3 Direction Selectivity

The mammalian retina contains approximately 20 different types of ganglion cells, most

of which respond to one or more specific features of a visual image, such as contrast,

color, or motion [12]. Most ganglion cells produce action potentials, even when unstim-



1.3. DIRECTION SELECTIVITY 9

ulated. Information about a visual stimulus is relayed to the ganglion cells in the form

of excitatory or inhibitory inputs, which cause spiking frequency in the ganglion cells to

increase or decrease correspondingly. When referring to a neuron that produces action

potentials such as a ganglion cell, the word response generally refers to a notable change

in spike production.

A majority of ganglion cell types are motion sensitive, meaning they respond to tem-

poral changes in luminance within their receptive fields, corresponding both to images

moving across the field of vision as well as to self-motion of the organism. The receptive

field of a given ganglion cell is the region of the retina containing the photoreceptors

that communicate with the ganglion cell through the interneurons. Exposing the recep-

tive field of a given ganglion cell to the appropriate stimulus will elicit a response from

that ganglion cell. The spatial receptive field of a ganglion cell is closely related to the

area spanned by its dendrites, although studies have noted that the fields may be signif-

icantly shifted relative to one another [13]. Spatial orientation of receptive fields was an

important consideration during the data analysis discussed in Chapter 5.

A subset of motion sensitive cells responds differentially to the directions of stimulus

motion. These Direction Selective (DS) ganglion cells exhibit a number of interesting

properties, most of which have been explored extensively throughout the last 40 years.

The receptive field properties were first subjected to rigorous analysis by Barlow and Lev-

ick in 1965 [14]. They deduced that inhibitory inputs to a DS cell override excitation

for movement in the cell’s null direction, while excitatory inputs are strongly facilitated

for movement in the opposite, preferred direction. Movement in intermediate directions

produces correspondingly intermediate levels of inhibition or excitation.

Research conducted on rabbit retinas has revealed two distinct types of DS ganglion

cells in the retina – On-OffDS cells and On DS cells [12]. On-OffDS cells demonstrate

the characteristic DS response to the movement of a stimulus that is lighter or darker

than the background field, while On DS cells are excited only by objects that are lighter

than the background. Several other properties distinguish On-Off DS cells from On DS

cells. Generally, On-Off DS cells respond to a wide range of stimulus speeds. On DS

cells, in contrast, respond optimally to stimuli moving at slow speeds.

Four subtypes of On-OffDS cells can be classified by the orientation of the preferred

direction of the cell, which points to one end either the horizontal or vertical ocular axis.
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Each of the four types responds preferentially to objects moving either to the left, right,

top, or bottom. The retina is completely tiled by the receptive fields of each subtype

of On-Off DS cell. On DS cells comprise only three distinct subtypes; the preferred

directions of each On DS cell points in one of three directions aligned with a different

set of axes.

Data examined in this thesis was gathered exclusively from On-Off DS cells. Col-

lecting data from the On-Off DS cells is somewhat simpler because they outnumber the

On DS cells by about ten to one. Also, there is some interest in potential asymmetries

between the responses from bright object stimulation versus the responses of dark object

stimulation. Future references to DS cells will imply the On-Off variety.

1.4 Outline

Most studies of neuronal signaling over the years have been restricted to the qualitative

realm. In recent years, however, advances in cellular recording techniques and cellu-

lar response theory have led to increasingly rigorous quantitative analyses of neuronal

responses [15, 16]. Both the results and the methods of these recent experiments are

interesting biophysical topics. This thesis combines several of these newer quantitative

methods with one of the most classic results of neuroscience, the Hodgkin-Huxley (HH)

model. Using these methods, more questions were raised than were answered, although

the analysis of DS cell recordings found in Chapter 5 suggests several interesting possi-

bilities. In particular, an approximately linear relationship apparently exists between the

stimulus velocity and the spiking frequency of the DS cells.

The remainder of thesis is divided into two parts. The next two chapters deal purely

with conceptual developments, theoretical models, and mathematics. Chapter 2 con-

tains theory relevant to the electrical properties of neuron membranes and includes a

conceptual development of the HH model, which describes major features of the mem-

brane potential including spike generation and is used to model the response of a DS

cell in the analysis section. A chronological survey of major conceptual developments is

particularly useful for understanding models of the electrical properties. The theoretical

background is further developed in Chapter 3 with a discussion of information coding

in spike trains.
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The final two chapters focus on data gathered from a series of experiments in which

stimuli were presented to DS cells and their electrical responses were recorded. Chap-

ter 4 describes the experiment used to collect data from the ganglion cells. This data

is presented and analyzed extensively in Chapter 5. This chapter also summarizes the

conclusions that can be drawn from the experiment and suggests potential directions for

future research.





Chapter 2

Electrical Properties of Excitable

Membranes

All neurons are bounded by an insulating membrane that separates the electrochemi-

cal compartment inside the cell from the surrounding extracellular space. An electric

potential exists across the cellular membrane as a result of inhomogeneity in the dis-

tribution of ions between the inside and the outside of the neuron. The membrane is

composed of a lipid bilayer with transmembrane proteins that serve various crucial func-

tions. One important function of these proteins is to modulate the electric potential

in response to environmental stimuli by opening and closing small pores known as ion

channels. Because the probability of each ion channel being open depends on the value

of the membrane potential, they are said to be voltage gated. In the absence of an exter-

nal stimulus, the potential is held at a non-zero constant known as the resting potential,

which is on the order of -40 mV in most cells. If the membrane potential is at or near the

resting potential, the membrane is said to be polarized. When neurons receive chemical

or electrical signals from other cells, they begin to depolarize. If the signals are relatively

weak, the depolarization is correspondingly small and approximately linear in relation

to the input. These slight depolarizations are often referred to as graded potentials be-

cause the amplitude decays as the potential travels along the membrane. If the signal

is sufficiently strong, however, the neuron will depolarize completely and rapidly. This

depolarization, known as an action potential, is brief but may occur repeatedly in a short

frame of time in response to an extended or particularly strong stimulus. The amplitude

of an action potential is maintained as it is conducted, as we shall see later in this chapter.
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Both graded potentials and action potentials are analyzed in the experimental portion of

this thesis. It is therefore desirable to discuss the basic model of membrane excitation.

The 1963 Nobel Prize in medicine was awarded to Andrew F. Huxley and Alan L.

Hodgkin for their theoretical model of electrically excitable membranes and the unprece-

dented measurements of the membrane current [17]. The techniques used to collect the

data found within this thesis are fundamentally reliant on the contributions of Hodgkin,

Huxley, and their predecessors. The HH model provides a basic framework for explain-

ing the occurrence of action potentials, a feat that eluded preceding models. Earlier

models did, however, provide valuable insight regarding electrical excitation and mem-

brane conductance. Most of these models were devised with the squid giant axon in

mind, as its large size and simple cylindrical shape made it the most prominent research

subject in the early years of neurophysiology, although they are generalizable to most

neurons.

2.1 The Core Conductor Model

The term electrically small is used to describe a cell in which the membrane potential is

the same along each point of the membrane at a given time. In contrast, the membrane

potential of a neuron varies with position along the membrane. Consequently, neurons

are said to be electrically large cells [18]. A comparison of an electrically small cell and an

electrically large cell is shown in Fig. 2.1. Communication within and between cells relies

on the propagation of localized potentials along the membrane. The core conductor

model initially developed by J. Hermann explains the passive spread of potentials without

reference to the excitable nature of the membrane and is thus one of the most primitive

models [19]. Because of its simplicity, however, the model is a valuable pedagogical tool.

Several assumptions lie at the center of the core conductor model. The fundamen-

tal assumption poses the membrane as a boundary between two homogeneous electric

conductors, the intracellular and extracellular materials. A cylindrical shape is assumed,

although the results are applicable to more exotic cell shapes. The cylinders are taken

to be long but with a small radius so that electrical parameters vary with the horizontal

coordinate z but are independent of azimuthal coordinate θ.
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FIG. 2.1: Diagram of electrically small cell (top) and electrically large cell (bottom). The
paramecium is an example of an electrically small cell; at a given time, the membrane
potential is the same along each point of the membrane. On the other hand, a cell with
a long axon is electrically large, and the potential attenuates as it travels along the z-axis
of the axon.
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inner conductor

outer conductor

Io Ii

Ke

Ke

Km
Vm

Vm

FIG. 2.2: A cross-sectional diagram of a neuron in the core conductor model. The
currents Io and Ii flow in the z direction into the page. The membrane current per unit
length Km is perpendicular to these currents. Ke is an externally applied current per unit
length.

In the core conductor model, a neuron can be represented as a simple circuit [18].

Application of Kirchhoff ’s laws to this circuit yields an equation that describes very gen-

erally the flow of a local current around a cell membrane. Figs. 2.2 and 2.3 show a

current, denoted by Ii, traveling in the z direction along the inner conductor and a cur-

rent, Io, traveling in the z direction along the outer conductor in order to form a circuit.

A membrane current flows perpendicular to these currents from the inner conductor to

the outer conductor. This current is expressed as a current per unit length Km. Most

experiments in which currents are measured use an externally applied current to simu-

late excitation from other cells. This external current, Ke, is also expressed as a current

per unit length. Each of these currents depends on the position variable z as well as

time. They are not denoted as vectors because they are each confined to travel along a

particular axis.

Citing Kirchhoff ’s current rule in the context of Fig. 2.3, we can legitimately claim

that

Ii(z, t) = Ii(z + ∆z, t) + Km(z, t)∆z . (2.1)
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FIG. 2.3: Diagram of a small section of the membrane in the core conductor model.
Note that the membrane potential Vm(z, t) varies with position as well as time.

A similar application of Kirchhoff ’s current rule to Fig. 2.2, which shows the current due

to external electrodes, yields the equation:

Io(z, t) + Km(z, t)∆z = Io(z + ∆z, t) + Ke(z, t)∆z . (2.2)

If a resistance per unit length is defined for both the inner conductor ri and the outer

conductor ro then the membrane shown in Fig. 2.3 can be represented in the slightly

more useful form found in Fig. 2.4, and the current relations above are less obscure.

In Fig. 2.4, it should be obvious that the membrane potential Vm is the difference

between the potential of the inner conductor Vi and the potential of the outer conductor

Vo at a given value of z. Applying Ohm’s law to the inner and outer potentials gives the

following equations:

Vi(z, t) = Vi(z + ∆z, t) + ri∆zIi(z + ∆z, t), (2.3)

Vo(z, t) = Vo(z + ∆z, t) + ro∆zIo(z + ∆z, t). (2.4)

Eqs. (2.1), (2.2), (2.3), and (2.4) become quite suggestive if they are rearranged in a
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ri ri

ro Io(z +∆z, t)

Ii(z, t) Ii(z +∆z, t)

Io(z, t)

Km(z, t)

Vm(z, t)

Vo(z, t)
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∆z

FIG. 2.4: Circuit diagram for a small section of the cellular membrane in the core con-
ductor model. Empty boxes are used as circuit elements because the electrical properties
of the cellular membrane are unspecified in the core conductor model. A factor of ∆z is
implied for variables expressed as linear densities such as ro and Ki.
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particular manner:

Ii(z + ∆z, t) − Ii(z, t)
∆z

= −Km(z, t), (2.5)

Io(z + ∆z, t) − Io(z, t)
∆z

= Km(z, t) − Ke(z, t), (2.6)

Vi(z + ∆z, t) − Vi(z, t)
∆z

= −riIi(z + ∆z, t), (2.7)

Vo(z + ∆z, t) − Vo(z, t)
∆z

= −roIo(z + ∆z, t). (2.8)

In the limit z → ∞, we obtain the core conductor equations:
∂Ii(z, t)

∂z
= −Km(z, t), (2.9)

∂Io(z, t)
∂z

= Km(z, t) − Ke(z, t), (2.10)

∂Vi(z, t)
∂z

= −riIi(z + ∆z, t), (2.11)

∂Vo(z, t)
∂z

= −roIo(z + ∆z, t). (2.12)

Combining Eqs. (2.11) and (2.12) with the definition of Vm leads to the relation

∂Vm(z, t)
∂z

= −riIi(z, t) + roIo(z, t). (2.13)

Taking the derivative of both sides and combining with Eqs. (2.9) and (2.10) yields

∂2Vm(z, t)
∂z2

= (ro + ri)Km(z, t) − roKe(z, t). (2.14)

Eq. (2.14) is generally referred to as the core conductor equation [18]. Neither the mem-

brane current or the membrane voltage can be calculated without some specific knowl-

edge of the electrical properties of the membrane.

As it stands, however, the core conductor equation explains several properties of elec-
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tric signals. Because part of the data for this thesis consists of extracellular spike train

records, it is particularly important that an action potential can be detected outside of

a cell, a possibility predicted by the core conductor model. If there are no externally

applied currents in the vicinity of the membrane, i.e. Ke = 0, then Kirchhoff ’s current

law demands Ii(z, t) = Io(z, t), in which case Eq. (2.13) can be rewritten as

Io(z, t) =
1

ro + ri

∂Vm(z, t)
∂z

. (2.15)

Because an action potential is a sharp depolarization of the membrane potential followed

by a somewhat less steep repolarization, it will be accompanied by a biphasic spike in the

current outside of the cell. If Ke 6= 0, then the membrane current, and consequently the

membrane potential, is effected accordingly. An appropriately positioned electrode with

a low resistance can draw the membrane current for the purpose of recording membrane

responses or apply an external current that will elicit a response from the membrane. This

property is centrally important to the field of electrophysiology. Additional implications

of the core conductor model are covered extensively in the relevant biophysics literature

[18], though it is necessary now to consider the electric properties of the membrane

itself.

2.2 The Resting Potential

In a series of papers published between 1881 and 1887, Sydney Ringer demonstrated

the necessity of definite proportions of sodium, potassium, and calcium ions to the con-

tinued function of living tissue, particularly in the heart. By the mid-twentieth century

it was known that the neuronal membrane is selectively permeable to certain ions, and

that each type of ion flows through an independent ion channel. A measurable potential

across the membrane results from different concentrations of the ions inside and outside

of the cell. In the absence of outside forces, an equilibrium is achieved when diffusional

forces caused by concentration differences are balanced by the electric force caused by the

electric potential. The Boltzmann distribution says that the number of particles found

in the zth state of a system at equilibrium is proportional to e−uz/kT where uz is the

potential energy of the zth state, k is Boltzmann’s constant, and T is absolute temperature

[20].
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For this two state system, the ratio of the number of particles outside the membrane

to the number of particles inside the membrane is

no

ni

= e−(uo−ui)/kT . (2.16)

Here o and i are used to denote the outside and the inside of the membrane, respectively.

By changing dimensions so that a number n becomes a molar concentration of some ion

S and energy u becomes energy per mole U, this equation can be rewritten as

[S]o

[S]i
= e−(Uo−Ui)/RT , (2.17)

where R is the gas constant. Taking the logarithm of both sides yields

Ui − Uo = RT ln [S]o

[S]i
. (2.18)

The change in chemical potential energy, Ui − Uo, is equal to the work done, W,

which is related to the electric potential difference across the membrane by the simple

electrostatics equation W = Q(Vi − Vo). If each ion S has a charge of zS, then the

equation can be written once more as

VS ≡ Vi − Vo =
RT

zSF
ln [S]o

[S]i
, (2.19)

where F is Faraday’s constant (9.648 × 104 C · mol−1). The equilibrium potential VS

was first derived in the late nineteenth century by Walther Nernst of Göttingen, who

consequently received the Nobel Prize [21].

A Nernst equilibrium potential exists for each type of ion. The overall membrane

potential necessarily falls somewhere between the most negative and most positive of

these individual ion equilibrium potentials, depending on how many of each type of ion

channel are open. For most unexcited neurons, the membrane is much more permeable

to K+ than to any other type of ion. As a result, the overall resting potential is very close

to the Nernst equilibrium potential of K+.
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2.3 The Cable Model

Although the resting potential is an important property of neurons, deviations from the

resting potential are of much greater interest. Excitation occurs when the resting potential

equilibrium is perturbed, usually by a signal from another cell or a current applied by an

experimenter, and an ionic flux across the membrane occurs. For every neuron, there is a

range of input amplitudes that will elicit a linearly proportional change in the membrane

potential. Over this range, the waveform of the potential will mimic the waveform of

the stimulus to a scaling factor. Linear responses to small perturbations may be called

sub-threshold responses, as a stimulus that exceeds the range of linearity generally causes

an action potential, which is highly non-linear.

The cable model combines the core conductor model with several additional assump-

tions regarding the electrical properties of the membrane to describe the voltage-current

relations for small electrical perturbations. Experiments at the beginning of the twentieth

century demonstrated that each section of the cell membrane can be well represented by a

resistor-battery series parallel to a capacitor in the regime of linear voltage responses [22].

By replacing the nondescript empty box that represents the membrane in Fig. 2.4, with

the new circuit element, we obtain the circuit diagram shown in Fig. 2.5. The battery,

denoted by Vq, is the resting potential of the membrane. Per convention, the resistive

element is described in terms of its conductance gm per unit length, where conductance

is defined as the inverse of resistance. The element cm is the membrane capacitance per

unit length.

The total potentials V and total currents K and I can be expressed as a sum of qui-

escent values V0,K0, I0, which represent the values for a resting cell, and incremental

values v,k, i, which express deviation from the quiescent values, so that Km(z, t) =

K0m + km(z, t), etc. With this modified notation, Eq. (2.14) can be rewritten

∂2[V0m(z) + vm(z, t)]
∂z2

= (ro + ri)[K
0
m(z) + km(z, t)] − ro[K0e(z) + ke(z, t)]. (2.20)

Noting that V0m is constant in time and setting the incremental variables to zero yields

(ri + ro)K0m − roK0e = 0. (2.21)
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FIG. 2.5: Cable model representation of a small section of the cellular membrane for
linear voltage-current relations. This circuit differs from the core conductor circuit in
the representation of the membrane. Vq is the (quiescent) resting potential gm denotes
conductance per unit length, which is the inverse of resistance per unit length, and cm is
capacitance per unit length. Again, a factor of ∆z is implied for all linear densities.



24 CHAPTER 2. ELECTRICAL PROPERTIES OF EXCITABLE MEMBRANES

Subtracting Eq. (2.21) from Eq. (2.20) gives the familiar equation

∂2vm(z, t)
∂z2

= (ro + ri)km(z, t) − roke(z, t). (2.22)

Kirchhoff ’s current law allows us to express km as

km(z, t) = gmvm(z, t) + cm
∂vm(z, t)

∂t
. (2.23)

Plugging Eq. (2.23) into Eq. (2.22) yields the cable equation, which was originally used

to describe the transmission of electric signals along sub-oceanic cables:

∂2vm(z, t)
∂z2

= (ro + ri)gmvm(z, t) + (ro + ri)
∂vm(z, t)

∂t
− roke(z, t). (2.24)

The cable model is useful in a large variety of contexts [18]. It was introduced here

to serve primarily as a stepping stone to our short-term goal, derivation of the Hodgkin-

Huxley model.

2.4 The Hodgkin-Huxley Model

The observation that ionic conductance changes during an action potential [23] sits

at the heart of the Hodgkin-Huxley model. An experimental technique called voltage

clamping, which uses an operational amplifier (op-amp) to directly control the mem-

brane potential, allowed Hodgkin and Huxley to pinpoint Na+ and K+ as the ions that

play the most significant role during action potential generation [24]. As a neuron be-

comes excited, it is depolarized slightly according to the cable model. At a specific mem-

brane potential, the linear relationship between voltage and current breaks down, and

the Na+ channels are activated, meaning they open rapidly. Activation leads to increased

ion conductance into the cell and rapid depolarization. When the potential reaches an-

other specific potential, the slightly slower process of inactivation occurs, Na+ channels

begin to close, and depolarization slows, eventually leading to repolarization [6]. The

K+ channels, which conduct ions out of the cell, are also activated at a specific potential,

although they do not undergo inactivation during an action potential. Rather, they close

slowly after the potential returns to its rest value.
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The term voltage gating describes the process of voltage regulated activation and in-

activation. The molecular processes responsible for voltage gating remain an important

topic for study in biophysics [6]. Fortunately, a complete understanding of these mech-

anisms is not necessary to develop the HH model or to make calculations of electrical

responses to a given stimulus. Expressed as a circuit, the HH model does not differ

GK GNa GLGM CM
CM

VK VNa VL

JM
JM

Vq

FIG. 2.6: Transformation of circuit element representing the membrane from the
cable model to the HH model. The GK and GNa conductances are time and membrane
potential dependent, while GL is independent of both of these variables. The potentials
are the equilibrium potentials of the subscripted ions.

greatly from the cable model, the important difference being the circuit element that

represents the membrane, which is modified in the HH model to account for individ-

ual ion currents. Since membrane capacitance is unaffected during excitation [6], only

the resistive element must be replaced. This transformation is shown in Fig. 2.6. The

new resistive element consists of three parallel branches, each with a resistor and a source

of electric potential. Each of the circuit elements in Fig. 2.6 now represents a small

two-dimensional patch of membrane, so the current is now represented by Jm, an area

density rather than a linear density. It is important to note that the conductance densities

GK and GNa, which correspond to specific ionic conductances, are dependent on both

time and the membrane potential. The associated potentials VK and VNa are the Nernst

equilibrium potentials for Na+ and K+. The third branch carries the leakage current,

which is independent of the membrane potential and accounts for all of the current not
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associated with the primary excitable channels.

According to Kirchhoff ’s current law, the membrane current is the sum of the cur-

rents through each of the four branches:

Jm = JC + JK + JNa + JL, (2.25)

or, multiplying both sides by the area element,

Im = IC + IK + INa + IL. (2.26)

Rewriting each of the individual currents using Ohm’s law for resistors and the constitu-

tive law for the capacitor yields

Im = cm
∂Vm

∂t
+ gK(Vm, t)(Vm − VK) + gNa(Vm, t)(Vm − VNa) + gL(Vm − VL). (2.27)

In the absence of external stimulation,

Im → 1
ro + ri

∂2Vm(z, t)
∂z2

per Eq. (2.14). In this case, Eq. (2.27) is a refinement of the core conductor model that

takes into account the electrical properties of the membrane. On the other hand, if the

conductances are taken to be constants, then the HH model (Eq. (2.27)) reduces to the

cable model (Eq. (2.24)).

To find the membrane potential as a function of the membrane current, individual

conductances, which depend on the membrane potential, must be known. By placing

the squid giant axon in chemical baths prepared with specific ion deficiencies, Hodgkin

and Huxley were able to measure the conductance for each type of ion individually

over the course of an action potential [25]. Their findings prompted them to write the

conductances as

gK(Vm, t) = n4(Vm)ḡK, (2.28)

gNa(Vm, t) = m3(Vm)h(Vm)ḡNa, (2.29)

where ḡK and ḡNa are the maximum conductances for the K+ and Na+ ions, respectively,
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and n, m, and h are probabilities.

To obtain Eq. (2.28) Hodgkin and Huxley proposed the idea that the mechanism

controlling each K channel can be represented by four independent membrane-bound

“particles,” each of which is in one of two possible states: the “permissive” state allows

ion flow through the channel, and the “non-permissive” state prevents ions from flowing

through the channel. A K+ channel is open when all of the particles are permissive and

closed if any of the particles is in the non-permissive state. The probability that any

one of the particles is permissive is represented by n, which makes transitions with an

exponential time course when the membrane potential is changed. The probability that

all four particles are permissive is then n4. This idea was motivated by fitting the gK

time course with an exponential curve, as almost nothing was known about the actual

molecular structure of ion channels at the time.

Although the time course for gNa is more complicated because the channels expe-

rience activation and inactivation, the logic is similar. In this case, three particles, each

with probability m of being permissive, control activation, and one particle, with prob-

ability h of being permissive, controls inactivation. The probability that a channel is

open ism3h. Because Hodgkin and Huxley had little knowledge of the molecular mech-

anisms involved in opening channels their logic was rather abstract, though the results

have proven to be extremely powerful.

Each probability n,m, and h is a function of both time and the membrane potential.

If xo and xc represent the probabilities of an arbitrary particle being in the permissive

state and non-permissive state respectively, then transitions between the permissive and

non-permissive states can be described by the first order reaction

xc

βx

�
αx

xo ,

with rate constants αx(Vm) for the transition from non-permissive to permissive and

βx(Vm) for the reverse transition. These rate constants can be found experimentally;

they are generally equal for similar cells although they can vary significantly between

cell types. The differential equations that describe these transitions for the probabilities
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n,m, and h, which by definition cannot be greater than one, are:

dn

dt
= αn(1− n) − βnn, (2.30)

dm

dt
= αm(1− m) − βmm, (2.31)

dh

dt
= αh(1− h) − βhh. (2.32)

For a fixed membrane potential, each probability reaches a limiting, or steady-state value

at t → ∞, which can be expressed:
n∞(Vm) =

αn

αn + βn

, (2.33)

m∞(Vm) =
αm

αm + βm

, (2.34)

h∞(Vm) =
αh

αh + βh

. (2.35)

The voltage-dependent time constants with which the probabilities approach this limit

are given by:

τn(Vm) =
1

αn + βn

, (2.36)

τm(Vm) =
1

αm + βm

, (2.37)

τh(Vm) =
1

αh + βh

. (2.38)

The steady-state values and time constants can be calculated from the rate constants,

which are obtained by fitting experimental data. Hodgkin and Huxley originally fit the
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rate constants of the squid giant axon [17] with the expressions

αn =
0.01(V + 55)
1− e−0.1(V+55) ,

βn = 0.125e−0.0125(V+65),

αm =
0.1(V + 40)
1− e−0.1(V+40) ,

βm = 4e−0.0556(V+65),

αh = 0.07e−0.05(V+65),

βh =
1

1+ e−0.1(V+35) .

The numbers in these expressions vary widely from from cell to cell, as can be seen

in the rate constants used for DS cells in Chapter 5, although the functional forms of

each equation have become convention. The steady-state values and time constants that

correspond to these expressions are shown in Fig 2.7.

Expressed in terms n, m, and h, Eq. (2.27) becomes,

Im = cm
∂Vm

∂t
+ n4ḡK(Vm − VK) + m3hḡNa(Vm − VNa) + gL(Vm − VL) . (2.39)

Eqs. (2.39), (2.30), (2.31), and (2.32) are know collectively as the Hodgkin-Huxley

equations. This set of coupled differential equations is the culmination of the Hodgkin-

Huxley model. If the membrane capacitance, equilibrium potentials, maximum con-

ductances, and rate constants are known for a given cell type, the HH equations can be

solved numerically for Vm with a given Im. That is, the HH equations can be used to

predict action potentials for a given stimulus. Because several approximations were made

to construct this model, and the actual response is somewhat stochastic, this prediction

is not exact. In the appropriate context, however, the HH model is an extremely useful

tool.
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FIG. 2.7: Steady-state values (top) and time constants (bottom) for the squid giant axon.
As probabilities, the steady-state values are unitless, and all variables are independent of
time. The steady-state value is the permissive probability limit for a given voltage. The
time constant graphs show how long it takes to reach the steady state value for a given
membrane potential.
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The derivation of the HH equations serves a dual purpose in this thesis. On one

hand, it constitutes a basic theory of electrically excitable membranes, which is necessary

to explain the origin of the data discussed in Chapter 5. Additionally, a modified version

of the HHmodel will be used to model the response of a DS cell during the data analysis.





Chapter 3

Neural Encoding

The Hodgkin-Huxley model considers the problem of how a cell responds to an elec-

trical stimulus. In this chapter, we will address a related problem using a completely

different approach. The goal is to understand how information about a stimulus is en-

coded in the output signal of a neuron. In general, this output signal consists of a series

of action potentials commonly called a spike train. Spike trains are the primary method

of communication between neurons. In 1948 Max Born noted,

The messages which the brain receives have not the least similarity with the

stimuli. They consist in pulses of given intensities and frequencies, charac-

teristic for the transmitting nerve-fiber, which ends at a definite place of the

cortex. All the brain ‘learns’ ... is a distribution or ‘map’ of pulses. [26]

Apparently, the nervous system must have a method for encoding and processing sensory

information.

Because action potentials are abrupt changes in membrane potential, they can be

detected by measuring the current just outside of a neuron’s soma or axon. An example

of a recorded spike train is shown in Fig. 3.11. The individual spikes last for only a few

milliseconds, with most of the structure being confined to an even smaller window of

time. It is useful to treat the spikes as instantaneous events that can be characterized

completely by the time at which they occur. In this case, a spike train containing n

1Note that the horizontal axis for each graph labeled with an ‘s’ in this thesis is assumed to represent
time (units of seconds) unless explicitly noted otherwise. Similarly, each vertical axis labeled ‘nA’ should
be taken to represent current (units of nano-Amps).



34 CHAPTER 3. NEURAL ENCODING

FIG. 3.1: Sample spike train segment. This recording was made outside of the soma of
a DS ganglion cell. Note individual spike are only a fewmilliseconds long. Consequently,
they can easily be transformed into delta functions.

spikes can be represented as a sequence of times at which each spike occurs ti where

i = 1, 2, ...,n on the interval 0 6 ti 6 T .

3.1 The Neural Response Function

The neural response function r(t) is a sum of Dirac delta functions (δ) located at points

defined by the spike times:

r(t) ≡
n∑

i=1

δ(t − ti). (3.1)

According to the definition of the Dirac delta function 2,

∫T

0
r(τ)dτ = n. (3.2)

If the spike-count rate is defined r ≡ n/T , then

r =
1
T

∫T

0
r(τ)dτ. (3.3)

2Note that the letter τ here is not related to the time-constants discussed in the previous chapter
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At this point, most of the literature proceeds to define the time dependent firing

rate in terms of the trial-averaged neural response function, which requires multiple

presentations of the same stimulus [27, 28]. Since each data set analyzed in this thesis was

generated using a unique stimulus, it is necessary to follow a different, though analogous,

route. Unless otherwise specified, the firing rate will be equivalent to the neural response

function. When it is necessary to define a firing rate that is different from the response

function, r(t) is usually reserved for the firing rate and ρ(t) is used for the response

function.

3.2 The Spike-Triggered Average

Ideally, a neuron will respond primarily to a single physical feature of a presented stim-

ulus. The significant feature can be expressed as a time dependent variable s(t), and the

other attributes of the stimulus can be ignored. For each spike time ti there is a corre-

sponding section of the stimulus, s(ti − τ), which begins a certain time before the spike

occurs. The spike-triggered average (STA), written C(τ), is the average of each of these

stimulus segments:

C(τ) =
1
n

n∑
i=1

s(ti − τ). (3.4)

FIG. 3.2: Sample spike-triggered average over the interval − 2 < τ < 0. The spike-
triggered average C(τ) corresponds to an arbitrary s(t) and does not have specific units.
Note that all of the structure occurs between -0.5 and 0. The rest of the displayed
segment of the STA is approximately zero, discounting noise.
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The sample STA in Fig. 3.2 reveals several significant features of a cell’s response to

the specific stimulus used to generate the spike train. This STA is not generalizable to all

stimuli, however, because the temporal autocorrelation (Fig. 3.3) of a specific stimulus

will bias the STA. The autocorrelation of the stimulus is defined

Qss(τ) ≡ s(t) ? s(t) =
1
T

∫T

0
s(t)s(t + τ)dt. (3.5)

where ? denotes correlation. Qss describes how the value of the function at a given time

depends on the value of the function at previous times and how it will effect the value

of the function at future times. The influence of the stimulus autocorrelation can be

seen in Fig. 3.2, when C(τ) fails to vanish for the acausal interval τ > 0. The STA

represents the average stimulus that elicits a spike. Obviously, the cell cannot spike in

response to concurrent or future actions of a stimulus. In order to create a function which

describes a cell’s response to a general stimulus, it is necessary to remove the stimulus

autocorrelations from the STA.

1.0
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0.6
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0.2
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210-1-2
s

FIG. 3.3: Sample stimulus autocorrelation. The stimulus is strongly correlated with
itself near τ = 0 and shows slight periodicity over the interval − 2 6 τ 6 2. We would
expect to see similar features in the STA for this stimulus.
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3.3 Reverse Correlation Function

The STA can also be expressed in the form of an integral by utilizing the conveniently

defined neural response function. According to Eqs. (3.1) and (3.4), we can write

C(τ) =
1
n

∫T

0
r(t)s(t − τ)dt. (3.6)

The integral form of C(τ) is particularly useful if we note that the cross-correlation of

r(t) and s(t), which are both real functions, is defined as

Qrs(τ) ≡ r(t) ? s(t) =
1
T

∫T

0
r(t)s(t + τ)dt. (3.7)

The relationship given by combining Eqs. (3.6) and (3.7) is

C(τ) =
n

T
Qrs(−τ) (3.8)

Apparently the STA can also be obtained by scaling and reflecting Qrs about the verti-

cal axis; therefore C(τ) is frequently referred to as the reverse correlation function. The

relationship shown in Eq. (3.8) is particularly important to removing the stimulus auto-

correlation influence from the STA.

3.4 The Wiener Kernel

The response function r(t) depends on the time-dependent function s(t) and could

therefore be written as a functional r(s(t)). Thus, the response function can be expressed

as a Volterra expansion, which is the functional analog to Taylor expansion [29]. The

Volterra expansion of r(s(t)) describes its relationship to s(t) in terms of a set of kernels

Dn(τ):

r(t) ≈ r0 +

∫
D1(τ)s(t − τ)dτ +

∫
D2(τ1, τ2)s(t − τ1)s(t − τ2)dτ1dτ2 + ... (3.9)

The zeroth order term r0 corresponds to random background firing, and can be ignored

because it is insignificant compared to stimulus invoked spiking. Additionally, higher

order terms can generally be disregarded unless it is apparent that the stimulus-response
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relationship is non-linear. Consequently, an estimate of the response requires only one

kernel, D = D1 :

rest(t) =

∫
D(τ)s(t − τ)dτ. (3.10)

D(τ) is called the first order Wiener kernel, or simply the Wiener kernel, after Norbert

Wiener, whose modifications of the Volterra expansion made it easier to use. According

to Eq. (3.10), the relationship between r(t) and s(t) can be estimated using only the

function D. If this kernel can be calculated, then it is possible to reproduce or predict

the response to a given stimulus, as shown in Chapter 5.

The Wiener kernel can be found by minimizing the squared difference between the

actual response and the estimated response. If a function E is defined

E(D) ≡ 1
T

∫T

0
(rest(t) − r(t))2dt

=
1
T

∫T

0

( ∫∞
0

D(τ)s(t − τ)dτ − r(t)
)2

dt, (3.11)

then the appropriate choice for D satisfies the condition ∂E/∂D = 0, or equivalently

E(D + δD) = E(D) for small δD. Letting D → D + δD gives

E(D + δD) =
1
T

∫T

0

( ∫∞
0

(
D(τ) + δD(τ)

)
s(t − τ)dτ − r(t)

)2
dt. (3.12)

Squaring the t integrand yields:

E(D + δD) = E(D) +
1
T

∫T

0

[ ∫∞
0

∫∞
0

(
2D(τ ′)δD(τ)s(t − τ)s(t − τ ′)

+ δD(τ)δD(τ ′)s(t − τ)s(t − τ ′)
)
dτdτ ′

− 2
∫∞
0

δD(τ)s(t − τ)dτ r(t)
]
dt. (3.13)

Since, δD is small, the δD(τ)δD(τ ′) term is negligible compared to the other terms and

falls out of Eq. (3.13), leaving

E(D + δD) − E(D) =
1
T

∫T

0

[ ∫∞
0

∫∞
0

(
2D(τ ′)δD(τ)s(t − τ)s(t − τ ′)

)
dτdτ ′

− 2
∫∞
0

δD(τ)s(t − τ ′)dτ r(t)
]
dt = 0. (3.14)
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Rearranging the terms and simplifying gives

∫∞
0

D(τ ′)

∫T

0
s(t − τ)s(t − τ ′)dtdτ ′ −

∫T

0
r(t)s(t − τ)dt = 0. (3.15)

Using the definitions of Qrs (see Eq. (3.7)) and Qss (see Eq. (3.5)), this equation can be

written ∫∞
−∞ D(τ ′)Qss(τ − τ ′)dτ ′ = D(τ) ∗Qss(τ) = Qrs(−τ) (3.16)

where ∗ denotes convolution (remember ? is used for correlation).

The convolution theorem states that the Fourier transform of a convolution is the

product of the Fourier transforms of the two functions being convolved. Implementing

this theorem and taking the Fourier transform of both sides yields

D̂(ω)Q̂ss(ω) = Q̂rs(−ω). (3.17)

where ˆ denotes the Fourier transform of the function beneath it. Solving for D̂, we have

D̂(ω) =
Q̂rs(−ω)

Q̂ss(ω)
. (3.18)

Taking the inverse Fourier transform of both sides yields a final expression forD in terms

of the response function and the stimulus function:

D(τ) =
1
2π

∫∞
−∞

Q̂rs(−ω)

Q̂ss(ω)
e−iωτdω. (3.19)

The Wiener kernel, D, predicts (to first order) how strongly and with what sign an

arbitrary stimulus at time t − τ will affect the neural response at time t. With the right

tools, the kernel can be calculated if both the stimulus and the response function are

known. In most experiments, including the one described in this thesis, the stimulus is

defined and parameterized beforehand, and the spike train response is recorded with an

electrode.
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3.5 Continuous Neural Responses

Some of the neural responses discussed in this document do not take the form of a

spike train. Rather, they are continuous intracellular current recordings, as shown in

Fig. 3.4. The benefit of the intracellular recording is that, assuming a high sampling

rate, it contains many more non-trivial sample points per second than does a spike train.

Using this alternate method would ideally improve the signal-to-noise ratio. Since there

are no spikes, however, it is necessary to adapt our definition of the neural response

function r(t) for these data sets.
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FIG. 3.4: Sample recording of the intracellular current. The spikes have been removed
using a computer so that the response may be regarded as a continuous function. This
record contains many more sample points per second than a spike train.

For the sake of simplicity, the intracellular neural response function ri will be defined

ri(t) ≡ γ(Ii(t) − I0), (3.20)

where Ii(t) is the intracellular current, I0 is the average intracellular current (excluding

spikes), and γ normalizes the function by setting the maximum response at 1. Con-
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veniently, this definition allows us to maintain our previous notation. Just as a burst of

spikes indicates a strong response to a stimulus, an elevated intracellular current indicates

strong excitation. Although C(τ) can no longer accurately be called the spike-triggered

average, this quantity still describes how strongly a cell responds to specific stimulus.

Similarly, the Wiener kernel still estimates the strength of correlation between a general

stimulus and the newly defined response function.





Chapter 4

Recording from Direction Selective Cells

The traditional stimulus for exploring the properties of neural encoding in DS ganglion

cells consists of a computer monitor divided into a grid [12], and focused onto the

receptive field of a DS cell. At every refresh of the monitor, each section of the grid

flashes either grey, dark, or bright. Occasionally the cell will detect motion from one

point of the grid to another and generate spikes. Although the flashing-grid stimulus

has the benefit of being white and does not impose any predefined notion of movement,

there are several inherent problems. The signal-to-noise ratio (SNR) is rather low, and

the data is difficult to interpret even when it is clean. An initial goal of this research was

to develop an alternative stimulus that could be more easily analyzed.

4.1 The Edge

Knowing that the cells of interest were motion sensitive allowed us to design a stimulus

that could exploit this fact to yield a high SNR. The essence of the stimulus is an edge

that divides a dark portion of a computer screen from a bright portion. The screen is

divided into 202 pixels along the axis of the DS cell’s preferred direction and has an

update frequency of 85 Hz. An edge speed of 1 pixel/frame on the monitor corresponds

to a speed of 144 µm/s on the retina. A positive velocity corresponds to motion in the

preferred direction. A random number generator is used to manipulate the edge in two

distinct ways. At each screen update, the velocity of the edge is randomly incremented

in steps of either -1, 0, or +1 pixels/frame, though it is not allowed to exceed the user

specified speed limit or to leave the screen entirely. It is then randomly multiplied by a
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factor of -1 or +1. The next refresh of the monitor reflects this change and moves the edge

accordingly. The frequency with which each of these adjustments occurs can be altered

individually. The net effect is a bounded random walk in velocity with random direction

flipping. When the stimulus is started, the edge begins in the middle of the screen. It

begins to move when the first non-zero velocity adjustment is generated and proceeds

to move back and forth across the screen with random velocities within a defined range

until it is terminated by the experimenter.

The stimulus was originally programmed in C for driving the video stimulus and

then recreated for the purposes of data analysis in the data processing program Igor1.

The code used to reproduce the velocity of the stimulus can be found in the Igor code in

Appendix A.

The edge stimulus provides two major benefits over the flashing-grid stimulus. Al-

though the edge occasionally has zero velocity, it spends most of its time moving in either

the preferred direction or the opposite direction. Consequently, the neuron constantly

experiences either excitation or inhibition. The number of spikes produced by the stim-

ulus far outweighs the number due to stochastic spiking so the SNR is high compared

to that of the flashing-grid stimulus, and less data is required to obtain a well-defined

spike-triggered average. The ease with which the stimulus can be described mathemati-

cally constitutes another clear advantage. Parameterization of the flashing-grid stimulus

proves to be a cumbersome task because each cell of the grid must be described by its

own time-dependent function. The relationships between these functions are generally

complex and difficult to untangle. In contrast, the edge stimulus can be fully described

in terms of a single time-dependent function, usually position or velocity. A graph of the

velocity of the edge as a function of time is shown in Fig. 4.1. Analyzing the relationship

between the neural response and the stimulus is comparatively straight forward.

Despite the convenience it affords, the edge stimulus is not without its disadvantages.

Specifically, there is necessarily strong temporal autocorrelation in a random walk. Be-

cause the edge moves continuously, the position of the edge at a time t is equal to the

the position before the last refresh plus the value of the velocity at t − 1. The velocity

at any time is also strongly correlated to the velocity at the previous instant, though the

randomly occurring factor of -1 makes this correlation periodically negative. The rela-

1Igor Pro Version 4.08, Wavemetrics, Lake Oswego, OR.
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FIG. 4.1: Graph of edge velocity as a function of time. Unlike a flashing-grid stimulus,
the edge is easily parameterized and graphically represented.

tionship of the stimulus autocorrelation to the spike-triggered average will be analyzed

more rigorously in Chapter 5.

4.2 Extracellular Recording

All data was collected in the lab of Rowland Taylor at the Neurological Sciences Institute,

a research division of Oregon Health and Science University. I was present in the lab

during the trials and participated by designing and controlling the stimulus.

The edge stimulus was presented to the receptive fields of DS cells in a live piece of

rabbit retinal tissue. A slice of the retina was removed from a rabbit and placed in a small

compartment filled with oxygenated Ames solution, a substance that is rich in the ions

and other chemicals upon which living tissue is dependent, at 35◦ C. The tissue is able

to survive in this medium for several hours after dissection. If the photoreceptors are

not exposed to bright light, the retina continues to function as though it were in a living

organism.

A light microscope (40x magnification) was used to view individual cells within the

tissue on a video monitor. To avoid damaging photoreceptors by overexposure to visible
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FIG. 4.2: Illustration of experimental setup. A beam splitter is used to view the
cell and electrode through a light microscope (40x magnification) while the stimulus
is being presented. Infra-red light is used to avoid overexposing the photoreceptors.
The CCD is necessarily chosen to be particularly sensitive. Graphic adapted from
http://jcsmr.anu.edu.au/ ∼dns/rowland/Set-up.html, 2004.
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light, infra-red light ( ∼ 900 nm) was passed through the tissue into the objective. A

charge-coupled device (CCD) camera capable of detecting this light was used to capture

the image and present it on the video monitor. Because the retina is transparent, the

CCD could be focused on the ganglion cell layer without obstruction by other cells.

When a suspected DS ganglion cell was located on the monitor, an electrode was posi-

tioned against, but not penetrating, the membrane of the neuron’s soma, which carries

the same signal as the axon and is considerably easier to locate.

As shown in Fig. 4.2, a beam splitter was used to focus the stimulus onto the area

of the retina that is displayed on the monitor. When a ganglion cell was found, a test

stimulus was presented to check for direction selectivity. The test stimulus consists of

a bright bar that moves from one side of the computer screen to the other, changing

directions by 30◦ after each trip across the screen. The moving bar generates two spike

bursts when it is near the preferred direction of an On-Off DS cell: the first burst occurs

when the bar enters the receptive field and excites the On channel, and the second occurs

when the bar leaves the receptive field and excites the Off channel. The spikes that occur

for each orientation of the bar are counted, and the preferred direction is defined as that

which resulted in the most spikes. If the preferred direction obviously falls between two

of these directions, the test stimulus is presented again with direction changes of 15◦.

After a DS cell was found and the preferred direction was determined, the edge

stimulus was aligned with the appropriate axis and presented to the cell in runs that

generally lasted 40-55 seconds. During this period, the cell’s spikes were recorded using

a commercial oscilloscope emulation software made byHEKA, which sampled at 10,000

Hz. The time for each trial was limited by the memory of the computer running the

oscilloscope.

The membrane current splits into a current that flows parallel to the membrane and

a current drawn by external electrodes, as demonstrated by the core conductor model in

Chapter 2. An electrode with an extremely low resistance is used in order to draw all

of the membrane current. The electrode is located in a glass pipette with a microscopic

fire-polished opening at the end. An action potential results in a sharp biphasic spike in

the recorded current similar to those shown in Fig. 3.1. The computer that presents the

stimulus is synchronized with the computer that records the spike train to a precision of

0.1 ms.
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4.3 Patch-clamp Recording

In addition to extracellular recording, intracellular currents were recorded and subjected

to similar analyses. The process of obtaining intracellular current recordings is notably

more complicated than that of obtaining spike trains [30]. In this case, the pipette con-

taining the electrode is filled with a solution that is chemically similar to the cytoplasm

positioned against the soma, just as it was for extracellular recordings. Unlike extracellu-

lar recording, however, a slight suction is applied to the large end of the pipette, causing

the glass to form a high resistance seal with the cell membrane. This seal is generally on

the order of 10-100 GΩ [18] so that current does not leak out at the pipette/membrane

boundary.

Once the seal is formed, another slight suction is administered, and the membrane

inside the pipette is ripped from the rest of the cell. The pipette becomes continuous

with the cell membrane, and the fluid within the pipette becomes continuous with the

cytoplasm. An illustration of this procedure is shown in Fig. 4.3. The record obtained

with this recording configuration is distinctly different from an extracellular spike train.

The sample section of an intracellular recording in Fig. 4.4 reveals subthreshold mem-

brane responses. Also, individual spikes no longer appear as biphasic bursts of current,

since the electrode is effectively recording from within the cell.
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FIG. 4.3: Schematic for whole-cell patch recording. [Adapted from
http://www.life.nthu.edu.tw, 2004.]

-70

-60

-50

-40

-30

pA

33.533.032.532.031.531.0
s

FIG. 4.4: Sample recording of intracellular current. Note that the spikes are not
biphasic, as they were for extracellular recordings (see Fig. 3.1).





Chapter 5

Data and Analysis

Extracellular and intracellular records were imported into Igor from the oscilloscope em-

ulator. Each record is identified by a number that corresponds to the trial from which

it was produced. All analysis and manipulations of the recordings were performed with

original code found in Appendix A unless otherwise noted.

Results of the spike train analysis encourage an attempt to model the neural response

by solving the Hodgkin-Huxley equations inMathematica1. Appendix B is comprised of

the Mathematica notebook, which contains the commands and sample graphs relevant

to this portion of the experiment.

5.1 Finding Spikes

Recording such small intracellular and extracellular signals from neurons requires delicate

equipment that is prone to detecting noise from ambient sources. The amplitude of the

noise frequently has a magnitude near that of the spikes, as shown in Fig. 5.1. Obviously,

a clean spike train is necessary to develop a relationship between the neural response and

the stimulus. A two-step filtering method was developed to remove the noise from the

data. First, two thresholds are set based on the appearance of the spike train. An upper

threshold and a lower threshold are selected above and below the baseline noise. For

recording 1-57 shown in Fig. 5.1, the baseline (average) current is approximately -0.5 nA,

and the upper and lower thresholds were selected at -0.2 nA and -1.0 nA, respectively.

1Mathematica version 4.2, Wolfram Research, Inc., Champaign, IL.
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FIG. 5.1: Spike train 1-57. Top: The extracellular current record for the edge stimulus
is cluttered with noise. Bottom: An expanded segment of the spike train shows that
some of the noise, identifiable as the spike-like structures that do not occur in bursts, is
of the same amplitude as the spikes. Noise occasionally produces a biphasic spike-like
structure.
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Any 3 ms section of the recording that exceeds both the upper and lower threshold is

preserved; the remainder of the recording is set equal to the average current for the entire

trial. Spike train 1-57 is shown after the first step of filtering in Fig. 5.2. Apparently, this

step successfully removes most of the noise, including noise with amplitude comparable

to that of the spikes. Occasionally the noise mimics the spikes in amplitude and shape as

seen in Fig. 5.3, or a legitimate spike fails to surpass one of the thresholds. The second

step of the filtering process is an attempt to correct both of these problems.

The 3 ms window around each maximum in the filtered record is averaged together

to produce a spike “template.” The template is compared to the original recording at

each point of the spike train, by summing the squared difference of the spike train and

the record, to produce a new function that relates the shape of each spike-like structure

to the average spike shape. A lower threshold is defined, and at points where the new

function exceeds this threshold the corresponding time becomes an element in a list of

spike times. A segment of the spike-matching function for spike train 1-57 is shown in

Fig. 5.5; an appropriate threshold for this function would be 1.

5.2 Acausal Elements of the Spike-Triggered Average

The filtering process converts an extracellular recording to a list of spike times. The

spike-triggered average (STA) is obtained by summing sections of the spike stimulus per

Eq. (3.4). The STA for a single 60 second trial is generally quite noisy, as shown in

Fig. 5.6. Averaging together the STAs of several trials on the same cell effectively extends

the trial period and reduces the noise significantly. The average STA for spike trains

1-57, 1-58, 1-73, 1-75, 1-77 and 1-81 is displayed in Fig. 5.7. The corresponding spike

trains and stimuli can be found in Appendix C.

The peak of the STA at 5 pixels/frame despite an average stimulus velocity of 0

demonstrates the neuron’s preference for motion in the positive (preferred) direction.

Unfortunately, additional information about the neuron is obscured by the effects of

the temporal autocorrelation (AC) of the stimulus shown in Fig. 5.8, which produces

minima of a similar structure.

The STA seems to suggest that the cell responds optimally to periodic variations in

velocity in the recent history as well as the near future. It is likely, however, that both of
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FIG. 5.2: Partially filtered version of spike train 1-57. The first filtering step, which
relies on an upper and lower threshold, removes the baseline noise and most of the noise
with high amplitude as well. Unfortunately, some of the spikes are also lost.
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FIG. 5.3: Spike-like noise which was not removed after first filtering step. Although
this “false” spike surpasses both thresholds, it does not have the characteristic spike shape
defined by the template in Fig. 5.4. Features of the recording such as this are removed
by the template matching step.
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FIG. 5.4: Average spike shape from filtered spike train 1-57. When convolved with
the original record, the average spike serves as a template for picking out spikes.
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FIG. 5.5: Spike-matching function (in arbitrary units) created by convolving the spike
template with the original recording. A threshold is selected below the baseline to pick
out the spikes.
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FIG. 5.6: STA for spike train 1-57 over the interval − 2 s 6 τ 6 2 s. The spike-
triggered average for a single 60 s trial is rather noisy, and there appears to be structure
in the region τ > 0.
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FIG. 5.7: Average STA of several trials on the same cell for the interval −2 s 6 τ 6 2 s.
This STA is much cleaner, though the effects of stimulus autocorrelation are even more
pronounced.
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FIG. 5.8: Temporal autocorrelation of stimulus 1-57. The periodic, exponentially
decaying autocorrelation of the edge stimulus closely resembles the resultant STA. Note
that units of the AC are dropped per convention.
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these features are the result of a strong influence of the stimulus AC. Although the AC

can be manipulated somewhat by adjusting the probabilities for random velocity changes

(see Appendix A), it cannot be completely avoided if the edge is meant to approximate

continuous motion. It is hoped that the reverse correlation method discussed in Chapter

3 will be of some use in revealing more subtle properties of the DS cell.

5.3 False Frequencies in the Wiener Kernel

As previously noted, the Wiener kernel approximates the effect that an arbitrary stimulus

at time t−τ will have on the neural response at time t. The Fast Fourier Transform (FFT)

and Inverse Fast Fourier Transform (IFFT) functions built into Igor are used to calculate

the Wiener kernels according to Eq. (3.19). The success of this procedure is limited by

the refresh rate of the monitor. Frequencies above 85 Hz cannot legitimately contribute

to the power spectrum of the stimulus, because the stimulus simply cannot move that

fast. When Q̂rs is divided by Q̂ss, the small values of Q̂ss at high frequencies divide the

values of Q̂rs at high frequencies, which causes them to blow up. Consequently, these

higher frequencies are over-represented in D, as seen in Fig. 5.11. The STA and AC for

this trial (2-55) are presented in Figs. 5.9 and 5.10.

This false frequency problem was attacked in a number of different ways, but every

method considered has essentially the same concept at its core: throw away the high

frequencies. This task can be accomplished using Igor’s built-in Gaussian smoothing

routine. This method of smoothing removes high frequencies by adjusting the value of

each point to an average of neighboring point values weighted according to a Gaussian of

user-defined width. When the higher frequencies are neglected some of the actual struc-

ture is lost as well, the effect of which can be seen in the smoothed kernel corresponding

to spike train 2-55 (Fig. 5.12). Although the signal is extremely noisy, it is encouraging

to note that the kernel returns to the region of baseline noise before τ = 0. Additionally,

there is no evidence of the exponentially decaying periodicity seen in the autocorrelation

of the stimulus.

Averaging kernels from multiple trials helps to reduce the noise and makes the actual

structure somewhat clearer, as demonstrated in Fig. 5.13. This kernel is constructed

from data for trials 2-55, 2-57, 2-61, 2-63, 2-65, 2-61a, 2-63a, 2-66, and 2-68. The
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FIG. 5.9: Spike-triggered average for spike train 2-55. Note the acausal element is
slightly different than that of Fig. 5.6.
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FIG. 5.10: Autocorrelation function for stimulus 2-55. The periodic variance matches
that of the STA in Fig. 5.9.
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FIG. 5.11: Wiener kernel for spike train 2-55. Division by small numbers in Fourier
space causes high frequencies to destroy the shape of the function.
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FIG. 5.12: Smoothed kernel for spike train 2-55, the first of nine data sets used
to construct the kernel in Fig. 5.13. High frequencies have been removed at the cost
of resolution, and the signal is still quite noisy. Note that the Wiener kernel, like the
autocorrelation, does not carry meaningful units.
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FIG. 5.13: Average of smoothed kernels from multiple trials. The average smoothed
kernel is much clearer than the kernel from a single trial.

smoothed and averaged kernel clearly demonstrates a strong positive correlation between

the stimulus and the response for τ ≈ 100 ms. The kernel also suggests a much weaker

negative relationship between the stimulus and response for τ ≈ 250 ms. Several neurons

are known to respond more strongly when excitation follows inhibition. It is unclear if

the negative correlation in the Wiener kernel indicates that DS cells exhibit this behavior,

or if the negative correlation should be attributed to noise. A possible extension of this

thesis would be to investigate this problem explicitly with an appropriately designed

experiment.

5.4 Intracellular Results

Intracellular recordings were made with the intent that more non-trivial data points

could be obtained per experimental trial, and the SNR would be improved. When the

spikes are removed from the data, the neural response can be represented as a continuous

function as shown in Section 3.5. As demonstrated in the following analysis, the attempt

to generate a better SNR proved to be only partially successful. The results from analysis

of intracellular recordings closely match those from the extracellular data.
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Intracellular data consists of a spike train on top of a continuous membrane current.

All of the analysis performed on the spike trains recorded externally can be applied to the

spike trains of the intracellular data. Additionally, the spikes can be removed, and the

membrane current can be analyzed by itself. Spikes were removed from the data using

the knowledge that a spike results in a very sharp rise in the current, which implies a high

current time derivative at the beginning of a spike. When the current derivative reached

a certain value, the current amplitude was held constant until the spike was over and the

current returned to that amplitude. Thus a spike free data set was obtained.

According to Eqs. (3.6) and (3.20), correlating the stimulus with the response should

produce a function equivalent to the flipped STA for the stimulus, unless there is a

significant difference between the data contained in the intracellular current and the

data contained in the spike train. An immediate attempt to perform this correlation

does not produce the expected results. Rather, the correlation function is swamped in

noise.

Investigation of this problem revealed that the cell only responded to the stimulus

during part of the trial. The stimulus was presented to an area of the retina that was

significantly larger than the receptive field of the neuron. The cell’s response can not be

correlated with the stimulus when the two are not spatially aligned. Since the receptive

field is much smaller than the domain of the stimulus, the correlation function is signif-

icantly diluted. This problem did not arise in the analysis of the spike train data because

spikes only occur when the cell does respond to the stimulus.

One-dimensional maps of the neuron’s receptive field are used to overcome this issue.

The receptive field map, such as the one calculated for trial 2-159 and displayed in

Fig. 5.14, is created by assigning each spike a position that corresponds to where the

stimulus was at a time just before the spike occurred. The time delay is determined by

the maximum value of the Wiener kernel, obtained from the neuron’s spike train. A

new stimulus function is created by scaling the original stimulus velocity by a position

dependent gaussian. If the edges of the receptive field are defined as x1 and x2 and the
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FIG. 5.14: One dimensional receptive field map of a DS cell. The spikes counted are
from trial 2-159. The x axis is aligned with the axis of the preferred direction. Specific
values of the y coordinates are arbitrary. The range of x corresponds to the 202 pixels of
the screen. Most of the spikes are confined to x1 = 75 < x < 140 = x2. The rest of the
spikes are attributed to stochastic firing.
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position of the stimulus is x(t), then the stimulus transforms as

s(t) →


s(t)e[(x(t)−x1)/30]2 if x(t) < x1

s(t) if x1 < x(t) < x2

s(t)e[(x(t)−x2)/30]2 if x(t) > x2.

(5.1)

This transformation is shown in Fig. 5.15 for the stimulus used in trial 2-159.

Using the transformed stimulus in the correlation function produces a result that is

quite similar to the reverse STA, though there is necessarily a scaling factor, as seen in

Fig. 5.16. There appears to be less noise in the intracellular correlation function, in the

sense that the signal is less jagged. On the other hand, intracellular correlation is more

heavily influenced by the stimulus autocorrelation. The stimulus autocorrelation corre-

sponding to the intracellular correlation function is slightly different than the stimulus

autocorrelation corresponding to the STA because a transformed stimulus was used to

calculate the correlation function. The two autocorrelation functions are compared in

Fig. 5.17.

Because the intracellular correlation function so closely resembles the STA and the

autocorrelation functions are good approximations of one another, it is reasonable to

expect the Wiener kernel calculated from the intracellular correlation function to mimic

the Wiener kernel calculated from the STA. This is confirmed in Fig. 5.18 for trial

2-161. The similarity between the two kernels demonstrates that, in the first-order ap-

proximation, there is little or no information lost as the continuous membrane potential

is converted into a spike train.

If the stimulus is inverted so that the dark side becomes the bright side and vice versa,

the Wiener kernel for intracellular data becomes negatively correlated with the stimulus,

as can be seen in the intracellular Wiener kernel of trial 2-160 (Fig. 5.19). This effect

varies with changes in luminance. Since the spikes only relate excitation, however, the

extracellular Wiener kernel exhibits the usual positive correlation. It may be possible to

use this fact to explore relationships between inhibition and excitation or On-channel

and Off-channel stimulation. The data collected for this thesis is not sufficient for this

purpose, though it seems to be a logical extension.
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FIG. 5.15: Stimulus transformation for trial 2-159. The stimulus is scaled with a
position dependent gaussian.
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FIG. 5.16: The STA (top) calculated from spike train 2-161 compared with the reverse
correlation function (bottom) calculated from the intracellular data of the same trial.
Note that the peak of the STA occurs before zero, while the peak of the bottom graph
occurs after zero. The shapes are quite similar, although they are influenced by different
stimulus autocorrelations since the intracellular correlation function was calculated using
the transformed stimulus. There is also a difference in scale.
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FIG. 5.17: Comparison of autocorrelation functions for original stimulus (top) and
transformed stimulus (bottom).
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FIG. 5.18: Comparison of Wiener kernel calculated using STA (top) and intracellular
correlation function (bottom) of trial 2-161. Discounting noise, the kernels are approx-
imately similar. The somewhat broader correlation period shown in the extracellular
kernel is likely due to differences in smoothing.
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FIG. 5.19: Wiener kernel for intracellular data from inverted version of stimulus 2-161.
The stimulus is negatively correlated with the response because On-channel inhibition
overpowers Off-channel excitation.
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5.5 Predicting Spike Bursts

The data collected shows that DS cells tends to respond to the edge stimulus with clus-

ters, or bursts, of spikes. The surprising success of predicting these bursts with a first-

order Wiener kernel validates the first order approximation. According to Eq. (3.10),

the neural response can be estimated by convolving the kernel with the stimulus. It

is again necessary to use the transformed stimulus, because that is all that the neuron

“sees.” The neural response estimate for trial 2-159 is shown in Fig. 5.20. Apparently,

this convolution does not constitute a prediction of the spike train in itself.

The actual spike times are generally stochastic in nature [27], and it is difficult to

predict individual spikes with this method. The response estimate does predict the times

at which spikes are likely to occur. A threshold is applied to the response estimate to

produce an “outline” of the spike train, as seen in Fig. 5.21. This threshold can be

tweaked until the prediction accounts for most of the spikes. Presumably, the threshold

is related to the intensity of the stimulus, although there is currently a lack of data to

confirm this. Once an appropriate threshold has been determined, it is possible to use

an average kernel from several sets of data to predict the spike bursts for a different set of

data.

Fig. 5.21 shows that the prediction can be quite accurate. Twelve bursts correspond

directly to predicted bursts; three bursts occur slightly before a predicted burst; and only

two appear to be completely unrepresented in the prediction. Consequently, it can be

concluded that the original first-order approximation is valid, and there is little to be

gained from the labor of calculating higher-order kernels. Presumably, however, more

sophisticated models could be generated to account for missed bursts.

5.6 Predicting Spikes

An unexpected, yet quite welcome result falls out of the receptive field maps calculated

for the intracellular analysis. The edge stimulus will necessarily spend more time in the

receptive field when it moves slowly than when it moves quickly. In fact an edge moving

twice as fast would move across the receptive field in half the time. As a result, it would be

expected that a slow moving stimulus would generate more spikes unless the frequency

of spike generation depends on the speed of the stimulus. In this case, the STA would
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FIG. 5.20: Neural response estimated by convolution of kernel and stimulus for trial
2-159. The neural response itself is unitless, as defined in Chaper 3. The function shows
the regions where spikes are most likely to occur, assuming a linear relationship.
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FIG. 5.21: Prediction of spike bursts with actual spike train recorded for trial 2-42.
The bold, dashed line is the spike burst prediction, and the lighter line is the actual
record. The spike bursts were predicted by applying a threshold to the the neural re-
sponse estimate. The kernel used was calculated with data averaged from other runs, so
the dashed line is actually a prediction rather than a recreation. Note that most spikes
correspond to a predicted burst, and vice versa.
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be biased towards low speeds.

Actual data shows, however, that the maximum value of an STA inevitably falls at the

average value of the positive speeds of the stimulus (for example, see Figs. 5.6 and 5.7,

in which the average stimulus speed is 5). It can be inferred from the lack of bias that

as many spikes are generated at high speeds as are generated at low speeds, and the

spiking frequency must be greater for higher stimulus speeds. Analogously, the HH

model predicts higher spiking frequencies for higher injected currents. Thus the HH

model was used to describe the correlation between stimulus speed and neural response.

The HH equations (Eqs. (2.30), (2.31), (2.32), and (2.39)) were solved usingMath-

ematica. It was necessary to specify initial conditions to solve the equations numerically.

Together, the HH equations and initial conditions take the form

initial :=

8v@0D == 0, m@0D == m¶@0D, n@0D == n¶@0D, h@0D == h¶@0D<

diffeqs := 8m£@tD == am@v@tDD H1 - m@tDL - bm@v@tDD m@tD,

n£@tD == an@v@tDD H1 - n@tDL - bn @v@tDD n@tD,

h£@tD == ah@v@tDD H1 - h@tDL - bh@v@tDD h@tD,

c v£@tD + gNa@tD Hv@tD - !NaL +

gK@tD Hv@tD - !KL + gleak  Hv@tD - !leakL ã i@tD<

HH rabbit3.nb 1

Printed by Mathematica for Students

,

where ′ denotes the time derivative, and resting potentials are represented by Es. The

rate constants and electrical parameters used in this model were taken from a paper in

which they were originally fit for data from DS cells in a cat retina [31]. They were then

altered slightly to improve the model. The electrical properties of the cell are defined as

In[95]:= g
ê
Na

= 150

g
ê
K

= 90

gleak = 0.25

c = 1

!Na = 75

!K = -85

!leak = -70

gNa@t_D = g
ê
Na

 m@tD3  h@tD

gK@t_D = g
ê
K
 n@tD4

HH rabbit3.nb 1

Printed by Mathematica for Students

,
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where the potentials are in mV, the conductances g are in nS (nano-Siemens), and the

capacitance c is in pF. The rate constants are defined in the conventional forms (see

Section 2.4):

am@v_D :=
0.5 Hv + 29L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Exp@-0.18 Hv + 29LD

bm@v_D := 6 ExpA-
v + 45
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

E

ah@v_D := 0.15* ExpA-
v + 47
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
20

E

bh@v_D :=
2.8

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@-0.1 Hv + 20LD

an@v_D :=
0.0065 Hv + 30L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Exp@-0.3 Hv + 30LD

bn@v_D := 0.083 ExpA-
v + 15
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

E

m¶@v_D :=
am@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
am@vD + bm@vD

h¶@v_D :=
ah@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ah@vD + bh@vD

n¶@v_D :=
an@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
an@vD + bn@vD

HH rabbit3.nb 1

Printed by Mathematica for Students

.

The stimulus velocity is taken from Igor and converted to a membrane current in

Mathematica by scaling the positive values up and the negative values down, as this

matches the actual data much better than using an identical scalar for both positive and

negative values. The precise values of the scalars are adjusted to better reproduce the

actual spike train, though optimal values have yet to be deduced. Once the current has

been defined the HH equations are solved, and the membrane potential is plotted.

As can be seen in the comparison of a reproduced spike train with the actual spike

train in Fig. 5.22, this prediction method is far from reliable. This model is still in

an infantile stage of development, and it is likely that additional manipulation of the

stimulus transformation procedure, the rate constants, and electrical constants could

greatly improve this model. Ideally, each of these parameters would be systematically

optimized to produce reliable predictions.
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FIG. 5.22: A HH-like model is used to predict spikes for trial 2-159 with limited
success. Although spikes appear in roughly the same places in each graph, the HH
prediction (top) misses many of the spikes seen in the actual record (bottom). Presumably,
this could be improved in future versions of the model.
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5.7 Conclusion

A comparison of Figs. 5.21 and 5.22 shows that the Wiener kernel predictions are much

more accurate than the HH model spike-train predictions. In general, the kernel pre-

diction accounts for 75% to 85% of the bursts in the actual spike train. Unfortunately,

the neural response estimate does not allow for the prediction of individual spikes. The

relevant literature [28] suggests that individual spikes can be predicted using a Wiener

kernel by averaging multiple presentations of an identical stimulus and calculating an

average neural response estimate called a firing rate estimate. This method must also be

incomplete, though, as it fails to address dynamical changes in the cell’s response, such

as adaptation to a stimulus.

The HH model is conveniently designed to handle such cell dynamics. For example,

adaptation can be accounted for by adding Ca2+ ion channels to the HH model [31].

Theoretically, a HH-like model should be able to accurately predict not only bursts,

but the number of spikes within each burst to a good approximation. (It is not, of

course, possible to predict the exact timing of each spike due to the stochastic nature

of action potential generation.) Currently, the HH model in this thesis yields at best

a rough estimate of the actual spike train. It appears entirely feasible, however, that

improvements to the model could produce predictions that are at least as accurate as

those generated by the Wiener kernel method.

5.8 Suggested Extensions

Several extensions of this research have been suggested based on the inconclusive results

found in this chapter. Other possibilities with broader foundations may be found in the

relevant literature. In particular, decoding information from and modeling populations

of retinal ganglion cells is currently a popular endeavor among scientists, and the litera-

ture is correspondingly extensive [28, 15]. Specifically, this problem would address the

number of cells needed to efficiently and completely recreate a given stimulus.

The one-dimensional receptive field maps created in this thesis serve a very specific

purpose, while highly detailed multi-dimensional receptive field maps of sensory neurons

can reveal an incredible amount of information regarding the nervous system. This

problem is also closely related to modeling responses of populations [32].
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Perhaps the most obvious extension would be to attempt a refinement of the HH-like

DS cell model. Computers can be used to find optimal parameters for the rate constants

and other parameters that minimize the difference between the predicted response and

the actual response. The model may also be improved by including calcium channels,

which would help modulate spiking frequency and adaptation [18, 31].





Appendix A

Igor Code

The important elements of the Igor Code used for analysis are detailed in the following

sections. These sections do not constitute a complete, working program, yet it should

be elucidating enough that the ambitious reader would be able to recreate a reasonable

facsimile of the original program using almost any full-featured mathematical software.

Important comments generally precede code, although certain less important com-

ments are found within the code and delimited by a //. Similarly, most of the important

variables are described in the text, whereas the reader is expected to recognize the purpose

of the less important variables and indices from contextual clues. Igor’s syntax is unique

in that lists of numbers or letters, most commonly known as arrays, are called waves in

Igor. Waves should be considered to be one-dimensional unless otherwise noted.

A.1 Spike Train Filtering

Analysis of the data begins by cleaning up the spike train. The original data record,

which consists of an array of current values recorded at 0.1 ms intervals, is loaded into

memory under the wave name CurrentData. The average value of CurrentData is

determined with wavestats, and a new wave, Fil_out is set equal to this value at

all points. Each segment of CurrentData is checked to see if it surpasses the upper

and lower thresholds (UpperTemp_thrHold and LowerTemp_thrHold). If it does, that

section is copied to Fil_out and stored in a two-dimensional wave called Allspikes.

The number of spikes is counted by the variable Temp_count. Every spike stored in

Allspikes is averaged together to create a spike template called AvgSpike. The spike
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template is compared against CurrentData, and the square of the difference at each

point is stored in a new wave, Sp_match.

wave CurrentData=root:CurrentData

wavestats/q CurrentData
Fil_out = V_avg

for(j=0;j < S_pnts;j+=1)
Sp_max=V_avg
Sp_min=V_avg
Single_wave=V_Avg
for(k=0;k<Sp_width;k+=1)
Single_wave[k]=Currentdata[j+k]
if((k>=Sp_Width/2)&&(Single_wave[k-Sp_width/2]<Sp_min))
Sp_min=Single_wave[k-Sp_width/2]
endif
if((k>=Sp_width/2)&&(Single_wave[k-Sp_width/2]>Sp_max)&&(Sp_min<LTH))
Sp_max=Single_wave[k-Sp_width/2]
endif
endfor
if((Sp_max > UpperTemp_ThrHold)&&(Sp_min < LowerTemp_thrHold))
Temp_count+=1
for(k=0;k<Sp_width;k+=1)
Fil_out[j+k]=Single_wave[k]
endfor
Allspikes[0, SP_Width-1][SP_number]=Single_wave[p-1]
InsertPoints/M=1 Temp_Count,1, Allspikes
j+=Sp_width // Avoid double-counting spikes.
endif
endfor
for(j=0;j<Sp_width;j+=1)
for(k=0;k<Temp_count;k+=1)
Sumspikes[j]+=Allspikes[j][k]
endfor
endfor
Avgspike=Sumspikes/Temp_count

for(k=0;k<Sp_width;k+=1)
Sp_match[0, S_pnts]+= (Avgspike[k]-Currentdata[p+k])^2
endfor

After Sp_match has been generated, the user defines a lower threshold, which is
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stored in Com_thrHold. Each time Sp_match dips below this threshold, the spike time

is counted in Com_count and added to the list Com_times.

for(j=0;j<S_pnts;j+=1)
if((Sp_match[j] < Com_thrHold)&&(Sp_match[j]<Sp_match[j-1])
&&(Sp_match[j]<Sp_match[j+1]))
Com_count+=1
endif
endfor

make/o/n=(Com_count) Com_times=0
for(j=0;j<S_pnts;j+=1)
if((Sp_match[j] < Com_thrHold)&&(Sp_match[j]<Sp_match[j-1])
&&(Sp_match[j]<Sp_match[j+1]))
for(k=0;k<Sp_Width;k+=1)
if((Currentdata[j+k]<Currentdata[j+k-1])
&&(Currentdata[j+k]<Lowertemp_thrHold))
Com_times[m]=(j+k)*deltax(Currentdata)
endif
endfor
m+=1
j+=Sp_width/2 // Skips a few points to avoid double counting spikes.
endif
endfor

A.2 Stimulus Reproduction

The edge stimulus is reproduced in two waves, EdgePosition and EdgeVelocity, us-

ing the seed that was used to create the stimulus. The random number generator was

originally programmed by Rowland Taylor (NSI). Because there is nothing particularly

unique about the random number generator itself, this section mainly serves to show

the origin of the velocity and position stimulus reproductions and to show how certain

random probabilities might be adjusted. Also note that the stimulus is confined by the

maximum speed, MasSpeed, and the screensize, numpix.

temp=ran1(-seed)
for(j=0;j<size;j+=1)
if(j==0)
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temp=ran1(-seed);
else
temp=ran1(seed);
endif
tS[j] = (temp < propd) ? -1 : 1 // Prob for position change
uS[j] = (temp < propm) ? -1 : 1 // Prob for speed change
vS[j] = (temp < 0.5) ? -1 : 1
endfor
for(j=0;j<noisesize;j+=1)
NS[j][0] = tS[mod((size+j-gunoffset*0),size)]
endfor
for(j=0;j<noisesize;j+=1)
NS[j][1] = uS[mod((size+j-gunoffset*1),size)]
endfor
for(j=0;j<noisesize;j+=1)
NS[j][2] = vS[mod((size+j-gunoffset*2),size)]
endfor

Duplicate/O NS tempWave
make/O/N=(length) EdgePosition
make/O/N=(length) EdgeVelocity
make/O/N=(length) EdgeTime=x/FrameRate+Delay*0.001

for(j=0;j<=length;j+=1)
EdgePosition[j]=pixel
EdgeVelocity[j]=speed
if(tempWave[j][0]<0)
speed=-speed
endif
if(tempwave[j][1] < 0)
if(((tempwave[j][2]<0)&&(Speed<MaxSpeed))||(speed==-MaxSpeed))
speed+=1
elseif(((tempwave[j][2]>0)&&(speed>-MaxSpeed))||(speed==MaxSpeed))
speed-=1
endif
endif
if((pixel == 2)&&(speed < 0))
speed = -speed
endif
pixel=pixel+speed;
if(pixel>=numpix)
pixel=2*numpix-pixel-1
speed=-speed
endif
if(pixel<=2)
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pixel=4-pixel
speed=-speed
endif
endfor

A.3 Spike-Triggered Average

This section of code reads the spike times from Com_times to segregate each spike by

the position at which it occurs in the two-dimensional wave AllAbsSSP and to generate

the STA in a wave called AvgSSV. AllAbsSSP can be used to generate the receptive

field map. The variable CC is the spike count, and stimlength_fr is the length of the

stimulus window corresponding to each spike.

For(j=0;j<CC;j+=1)
Pointer=round((Com_times[j]-Stimlength_s-delay)*framerate)
AllAbsSSP[0,Stimlength_fr][j]=EdgePosition[pointer+p+stimlength_fr/2]
AllSSV[0, Stimlength_fr][j]=EdgeVelocity[Pointer+p+stimlength_fr/2]
SumSSV[0,Stimlength_fr]+=AllSSV[p][j]
Net+=1
Endfor
AvgSSV=SumSSV/Net

A.4 Removing Autocorrelation

The reverse correlation process begins by generating the autocorrelation of the stimulus

velocity wave vstim, which is a duplicate of EdgeVelocity. The relevant sections are

saved in Qvv, which is normalized to 1 at t = 0. The stimulus-response cross correlation,

Qrv, is calculated from AvgSSV. FFTs are calculated and saved as Qvv_ft and Qrv_ft.

The Wiener kernel, Velkernel, is the inverse FFT of Qrv_ft divided by Qvv_ft.

correlate vstim vstim

duplicate/o AvgSSV Qrv
Qvv[0,T-1]=vstim[(numpnts(vstim)-1)/2-T/2+p]/vstim(0)

setscale x, -stimlength_s/2, stimlength_s/2, Qvv
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setscale x, -stimlength_s/2, stimlength_s/2, Qrv
duplicate/o/c Qrv Qrv_ft
duplicate/o/c Qvv Qvv_ft

FFT Qrv_ft
FFT Qvv_ft

Duplicate/c/o Qrv_ft VelKernel
VelKernel/=Qvv_ft
IFFT VelKernel

A.5 Intracellular Analysis

Intracellular recordings are first analyzed using the routines written for spike-train data.

All spike-like elements are identified if they exceed the threshold UpperTemp_thrHold,

and cut off at the point were the derivative of the current exceeds the allowed slope.

The spikeless current record is shifted, scaled, and saved as nospikes.

for(j=0;j<length;j+=1)
NoSpikes[j]=currentdata[j]
if(currentdata[j]>UpperTemp_thrHold)
k=0
m=0
do
k+=1
while(abs(currentdata[j-k]-currentdata[j-k+1])>slope)
do
m+=1
while(currentdata[j+m]>currentdata[j-k])
NoSpikes[j-k,j+m]=currentdata[j-k]
j+=m
endif
endfor
avg=mean(nospikes)
nospikes-=avg
wavestats/q nospikes
nospikes/=V_max

Code used to generate the intracellular Wiener kernel is similar to that used to gen-

erate the kernel from the spike train. The most significant portion of the following
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code is the transformation of the stimulus. First EdgeVelocity and EdgePosition are

stretched and saved as LongVel and LongPos so that each sample point in the data has a

corresponding stimulus value.

Function IC_Correlate()
for(j=0;j<size;j+=1)
LongVel[delay*10+(j)*skip, delay*10+(j+1)*skip-1]=edgevelocity[m]
LongPos[delay*10+(j)*skip, delay*10+(j+1)*skip-1]=edgeposition[m]
m+=1
endfor

The edges of the receptive field are calculated and stored as edge1 and edge2. If

LongPos is located outside of the receptive field at some point, the corresponding point

in LongVel is scaled by a gaussian function, so that the stimulus is muted the farther it

travels from this region.

wavestats/q avgssv

do
j+=1
while((sumsegpos[v_maxloc][j-1]<=com_count)
||(sumsegpos[v_maxloc][j]<=com_count))
edge1=j

j+=15
do
j+=1
while((sumsegpos[v_maxloc][j]>=com_count)
||(sumsegpos[v_maxloc][j+1]>=com_count))
edge2=j

for(j=0;j<length;j+=1)
if(longpos[j]<edge1)
longvel[j]*=exp(-(((longpos[j]-(edge1))/(20))^2))
elseif(longpos[j]>edge2)
longvel[j]*=exp(-(((longpos[j]-(edge2))/(20))^2))
endif
endfor

The autocorrelation function and cross-correlation funtion are calculated and saved

as Rvv and Rvx, respectively. FFTs of these waves are saved as Svv and Svx. The kernel
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is calculated in the usual manner and stored as ic_vkernel. Finally, ic_vkernel is

smoothed using Igor’s internal binomial smoothing routine.

duplicate/o nospikes Rvx
correlate longvel Rvx

duplicate/o longvel Rvv
correlate longvel Rvv
j=rvv(0)
Rvv/=j

duplicate/o Rvx Svx
duplicate/o Rvv Svv
deletepoints 0, (length-stim_sp/2-1), Svx
deletepoints (stim_sp), (length-stim_sp/2), Svx
deletepoints 0, (length-stim_sp/2-1), Svv
deletepoints (stim_sp), (length-stim_sp/2), Svv
setscale x, -(stimlength_s/2), (stimlength_s/2), Svx
setscale x, -(stimlength_s/2), (stimlength_s/2), Svv

fft Svx
fft Svv
duplicate/o/c Svx ic_vkernel
ic_vkernel=svx/svv
ifft ic_vkernel
smooth/E=2 smth, ic_vkernel
wavestats/q ic_vkernel

A.6 Spike-Burst Prediction

The neural response function is estimated by the convolution of the Wiener kernel,

ic_vkernel, with the stimulus, longvel. The resultant wave is compared to a threshold

value, TH. When the convolution is above the threshold, a spike burst is predicted and

recorded in the wave K_Burst. This prediction may need to be scaled in order to be

compared to the original spike record.

make/o/n=(numpnts(longvel)) K_burst=0
make/o/n=(m) K_Temp
K_temp[0, m-1]=ic_vkernel[m-1-p]
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duplicate/o longvel K_match
convolve K_temp K_match
for(j=0;j<numpnts(k_match);j+=1)
if(K_match[j]>TH)
K_burst[j]=1
endif
endfor





Appendix B

Mathematica Notebook

This appendix details the important elements of a sample Mathematica notebook used

to predict spikes via an HH-like model. The only portion of theMathematica notebook

which changes significantly from trial to trial is the injected current, which is based on

the stimulus velocity. The equations and terminology that follow should be considered

in the context of Chapter 2 for full comprehension.

As previously noted, the rate constants and electrical constants for the membrane

were adapted from a model of a cat DS cell [31]. The constants listed below presumably

are not optimal values for minimizing the error in this model. Ideally, an automated

method of optimizing these constants could be devised as an extension of this project.

The rate constants were defined inMathematica as

am@v_D :=
0.5 Hv + 29L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Exp@-0.18 Hv + 29LD

bm@v_D := 6 ExpA-
v + 45
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

E

ah@v_D := 0.15* ExpA-
v + 47
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
20

E

bh@v_D :=
2.8

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@-0.1 Hv + 20LD

an@v_D :=
0.0065 Hv + 30L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Exp@-0.3 Hv + 30LD

bn@v_D := 0.083 ExpA-
v + 15
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

E

m¶@v_D :=
am@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
am@vD + bm@vD

h¶@v_D :=
ah@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ah@vD + bh@vD

n¶@v_D :=
an@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
an@vD + bn@vD

tm@v_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
am@vD + bm@vD

th@v_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ah@vD + bh@vD

tn@v_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
an@vD + bn@vD

HH rabbit3.nb 1

Printed by Mathematica for Students

,

(B.1)



90 APPENDIX B. MATHEMATICA NOTEBOOK

where the exponential forms are merely conventional and of no particular significance

for this document.

The corresponding steady-state values and time constants are defined

am@v_D :=
0.5 Hv + 29L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Exp@-0.18 Hv + 29LD

bm@v_D := 6 ExpA-
v + 45
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

E

ah@v_D := 0.15* ExpA-
v + 47
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
20

E

bh@v_D :=
2.8

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Exp@-0.1 Hv + 20LD

an@v_D :=
0.0065 Hv + 30L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Exp@-0.3 Hv + 30LD

bn@v_D := 0.083 ExpA-
v + 15
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

E

m¶@v_D :=
am@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
am@vD + bm@vD

h¶@v_D :=
ah@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ah@vD + bh@vD

n¶@v_D :=
an@vD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
an@vD + bn@vD

tm@v_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
am@vD + bm@vD

th@v_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ah@vD + bh@vD

tn@v_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
an@vD + bn@vD

HH rabbit3.nb 1

Printed by Mathematica for Students

(B.2)

and are plotted as functions of voltage with the commands

Plot@Evaluate@8m¶@vD, h¶@vD, n¶@vD<D,

8v, -150, 150<, PlotRange Ø AllD

Plot@Evaluate@8tn@vD, tm@vD, th@vD<D,

8v, -150, 150<, PlotRange Ø AllD

HH rabbit3.nb 1

Printed by Mathematica for Students

to aid in visualization of the properties of the constants. These plots are shown in Fig. B.1

and B.2. (The significance of these figures is discussed in Chapter 2.) The electical

constants are defined
In[95]:= g

ê
Na

= 150

g
ê
K

= 90

gleak = 0.25

c = 1

!Na = 75

!K = -85

!leak = -70

gNa@t_D = g
ê
Na

 m@tD3  h@tD

gK@t_D = g
ê
K
 n@tD4

HH rabbit3.nb 1

Printed by Mathematica for Students

,
(B.3)
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FIG. B.1: Mathematica plot of HH steady-state values vs. membrane voltage.

FIG. B.2: Mathematica plot of HH time constants vs. membrane voltage.
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where the electromotive forces E are in mV, the conductances g are in nS, and the capac-

itance c is in pF.

In order to solve the HH equations numerically, Mathematica requires initial condi-

tions for each of the variables. The equations and initial conditions are entered into the

program in the following form:

initial :=

8v@0D == 0, m@0D == m¶@0D, n@0D == n¶@0D, h@0D == h¶@0D<

diffeqs := 8m£@tD == am@v@tDD H1 - m@tDL - bm@v@tDD m@tD,

n£@tD == an@v@tDD H1 - n@tDL - bn @v@tDD n@tD,

h£@tD == ah@v@tDD H1 - h@tDL - bh@v@tDD h@tD,

c v£@tD + gNa@tD Hv@tD - !NaL +

gK@tD Hv@tD - !KL + gleak  Hv@tD - !leakL ã i@tD<

HH rabbit3.nb 1

Printed by Mathematica for Students

.
(B.4)

Here, ′ denotes the time derivative.

To construct the injected current, a list of numbers that describes the transformed

edge velocity (see Chapter 5) is pasted intoMathematica from Igor:

Velocity := 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 1, 2, -2, -2, -1, 0, -1, -1, -2, 2, 2, 1,

1, 0, -1, -1, -2, -2, -2, -1.99113, 3, 3, 2, 1, 1, 0,

0, 0, 0, 1, 2, 2, 1, 1, 1, 2, 3, -3, -2, -2, -1, -1,

-1, -1, -1, -2, -2, 2, 1, 0, -1, -1, -1, 0, -1, -1,

-2, 3, 4, 4, 4, 4, 3, 3, 2.97015, 2.88237, 2.74179,

2.55643, 2.3364, 1.45069, 1.33915, 1.75213, 1.05458,

0.943684, 0.836973, 0.735759, 0.641061, 0.553609,

0.473856, 0.553559, 0.422575, -0.553559, -0.436938,

-0.512752, -0.596395, -0.687543, -0.785608,

-0.889716, -0.471842, -0.499352, -0.527292,

0.943684, 0.444858, 0.418486, -0.444858, -0.471842,

-1.05458, -1.83788, -2.90137, -3.3152, 2.90137,

2.92022, 1.88737, 1.47152, 1.28188, 0.845067, etc ...<

HH rabbit3.nb 1

Printed by Mathematica for Students

.

The velocity is then coupled with the the corresponding time in milliseconds using a For
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loop:

For@index = 1, index < 1500, index++, cv =

Union@cv, 8811.78 HindexL, If@Velocity@@index + 1DD > 0,

5, 0.05D * Velocity@@index + 1DD<<DD

HH rabbit3.nb 1

Printed by Mathematica for Students

.

The 11.78 multiplier corresponds to the refresh rate of the monitor. This refresh rate was

clocked at 84.9 Hz; therefore, the screen was updated every 11.78 ms. The If statement

found within the loop scales positive velocities up by a factor of 5 and negative velocities

down by a factor of 0.05, since it was noticed that the DS cells responded more strongly

to excitatory signals than to inhibitory signals. Mathematica’s interpolation function is

used to turn this list into a continuous function, which is graphed as a function of time:

i = Interpolation@cv, InterpolationOrder Ø 1D

Plot@i@tD, 8t, 0, 17658<, PlotRange Ø AllD

HH rabbit3.nb 1

Printed by Mathematica for Students

.

The resulting plot is shown in Fig. B.3.

Once i[t] is defined, the HH equations are solved numerically, and the potential is

plotted as a function of time to reveal the spike train:

solution = NDSolve@8initial, diffeqs<,

8v, m, n, h<, 8t, 0, 17600<, MaxSteps Ø 400000D

Plot@Evaluate@8v@tD< ê. solutionD, 8t, 0, 17600<,

8PlotRange Ø All, AxesLabel Ø 8ms, AU<, AxesOrigin Ø -70<D

HH rabbit3.nb 1

Printed by Mathematica for Students

.

The plot can be seen in Fig. B.4.
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HH rabbit3.nb 1

Printed by Mathematica for Students

FIG. B.3: Simulated injected current as a function of time. The current is created by
interpolating an altered form of the edge velocity.
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FIG. B.4: Membrane potential plotted as a function of time. This spike train represents
the solution to the HH equations for the given membrane current.
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Data Sets

Data for each trial referenced throughout Chapter 5 is contained here. Each data set

consists of the stimulus velocity for the trial and the spike train or intracellular record

that was produced. The caption below each set of graphs contains the reference number

for that trial.



96 APPENDIX C. DATA SETS

-10

-5

0

5

10

Pi
xe

ls
/f

ra
m

e

6050403020100
 s  

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

nA

6050403020100
s

FIG. C.1: Stimulus velocity (top) and spike train (bottom) for trial 1-57.
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FIG. C.2: Stimulus velocity (top) and spike train (bottom) for trial 1-58.
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FIG. C.3: Stimulus velocity (top) and spike train (bottom) for trial 1-73.
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FIG. C.4: Stimulus velocity (top) and spike train (bottom) for trial 1-75.



100 APPENDIX C. DATA SETS

-10

-5

0

5

10

Pi
xe

ls
/f

ra
m

e

500040003000200010000

1.0

0.5

0.0

-0.5

-1.0

nA

6050403020100
s

FIG. C.5: Stimulus velocity (top) and spike train (bottom) for trial 1-77.



101

-10

-5

0

5

10

Pi
xe

ls
/f

ra
m

e

6050403020100
  s 

1.5

1.0

0.5

0.0

-0.5

-1.0

nA

6050403020100
s

FIG. C.6: Stimulus velocity (top) and spike train (bottom) for trial 1-81.
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FIG. C.7: Stimulus velocity (top) and spike train (bottom) for trial 2-55.
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FIG. C.8: Stimulus velocity (top) and spike train (bottom) for trial 2-57.
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FIG. C.9: Stimulus velocity (top) and spike train (bottom) for trial 2-61.
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FIG. C.10: Stimulus velocity (top) and spike train (bottom) for trial 2-63.
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FIG. C.11: Stimulus velocity (top) and spike train (bottom) for trial 2-65.
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FIG. C.12: Stimulus velocity (top) and spike train (bottom) for trial 2-61a.
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FIG. C.13: Stimulus velocity (top) and spike train (bottom) for trial 2-63a.



109

-6

-4

-2

0

2

4

6

Pi
xe

ls
/f

ra
m

e

50403020100
  s 

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

nA

50403020100
s

FIG. C.14: Stimulus velocity (top) and spike train (bottom) for trial 2-66.
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FIG. C.15: Stimulus velocity (top) and spike train (bottom) for trial 2-68.
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FIG. C.16: Stimulus velocity (top) and intracellular current record (bottom) for trial
2-159.
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FIG. C.17: Stimulus velocity (top) and intracellular current record (bottom) for trial
2-160.
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FIG. C.18: Stimulus velocity (top) and intracellular current record (bottom) for trial
2-161.
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