Bibliography

  1. Abbot and Marder (1995). Theory in Motion. Current Opinion in Neurobiology 5:832-840.
  2. Bell CC, Zakon H, and Finger TE (1989). Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology. Journal of Comparative Neurology 286(3): 391-407.
  3. Bell CC (1989). Sensory coding and corollary discharge effects in mormyrid electric fish. Journal of Experimental Biology 146: 229-53.
  4. Bell CC (1990). Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers. Journal of Neurophysiology 63(2): 319-32.
  5. Bell CC and Grant K (1992). Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity. Journal of Neurophysiology 68(3): 859-75.
  6. Bell CC, Libouban S, and Szabo T (1983). Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol. 216(3):327-38.
  7. Berman, Dunn and Maler (2001). Function of NMDA receptors and persistent sodium channels in a feedback pathway of the electrosensory system. Journal of Neurophysiology 86(4):1612-21.
  8. Carr and Friedman (1999). Evolution of Time Coding Systems. Neural Computation 11:1-20.
  9. D’Angelo E, De Filippi G, Rossi P, and Taglietti V (1995). Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physol (Lond) 484:397-413.
  10. D’Angelo E, De Filippi G, Rossi P, and Taglietti V (1997). Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ. J Neurophysiol 78:1631-1642.
  11. D’Angelo E, De Filippi G, Rossi P, and Taglietti V (1998). Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J Neurophysiol 80:493-503.
  12. D'Angelo E., Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, and Naldi G (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. Journal of Neuroscience 21(3): 759-70.
  13. Devor, A. (2000). Is the cerebellum like cerebellar-like structures? Brain Research - Brain Research Reviews 34(3): 149-56.
  14. Dusenbery (1992). Sensory Ecology. W.H. Freeman and Company: New York, NY.
  15. Gabbiani F, Midtgaard J, and Knopfel T (1994). Synaptic integration in a model of cerebellar granule cells.. Journal of Neurophysiology 72(2): 999-1009.
  16. Hall C, Bell CC, and Zelick R (1995). Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish. J Comp Physiol A 177: 29-39.
  17. Han VZ, Grant K, and Bell CC (2000). Rapid activation of GABAergic interneurons and possible calcium independent GABA release in the mormyrid electrosensory lobe. Journal of Neurophysiology 83(3): 1592-604.
  18. Heiligenberg W (1990). Electrosensory systems in fish. Synapse 6(2): 196-206.
  19. Heiligenberg W (1991). Neural Nets in Electric Fish. MIT Press: Cambridge, MA.
  20. Hines M and Carnevale T (1997). The NEURON simulation environment. Neural Comput. 9(6):1179-209.
  21. Hodgkin and Huxley (1952). A quantatative description of membrane currents and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500-544.
  22. Irving AJ, Collingridge GL, and Schoefield JG (1992). Glutamate and acetylcholine mobilize Ca2+ from the same intracellular pool in rat cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. Cell Calcium 13:293-301.
  23. James W (1918). The Principles of Psychology: Volume One. Dover Publications, Inc.: New York, NY.
  24. Lewis JE and Maler L (2001). Neuronal population codes and the perception of object distance in the weakly electric fish. J Neurosci 21(8):2842-50.
  25. Lisman JE (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences 20(1):38-43.
  26. Meek, Grant and Bell (1999). Structural Organization of the Mormyrid Electrosensory Lateral Line Lobe. J Exp Bio 202:1291-1300.
  27. Moss CF and Surlykke A (2001). Auditory scene analysis by echolocation in bats. J Acoust Soc Am 110(4):2207-26.
  28. Perkel DH and Bullock TH (1968). Neural Coding: A Report Based on an NRP Work Session. Neurosciences Res. Prog. Bull. 6(3):221-343.
  29. Raman and Bean (2001). Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys J. 80(2):729-37.
  30. Slesinger P and Bell CC (1985). Primary afferent fibers conduct impulses in both directions under physiological stimulus conditions. Journal of Comparative Physiology A-Sensory Neural & Behavioral Physiology 157(1): 15-22.
  31. Szabo T and Hagiwara S (1967). A latency-change mechanism involved in sensory coding of electric fish (mormyrids). Physiol. Behav. 2:331-335.
  32. von der Emde G, Schwarz S, Gomez L, Budelli R, and Grant K (1998). Electric fish measure distance in the dark. Nature 395(6705): 890-4.

PREVIOUS---CONTENTS